Expert Systems with Applications 36 (2009) 6714-6720

Contents lists available at ScienceDirect g 4
S
Expert Systems with Applications i

journal homepage: www.elsevier.com/locate/eswa

Genetic algorithm based neural network approaches for predicting churn
in cellular wireless network services ™

Parag C. Pendharkar *

Information Systems, School of Business Administration, Pennsylvania State University at Harrisburg, 777 West Harrisburg Pike, Middletown, PA 17057, United States

ARTICLE INFO ABSTRACT

Marketing research suggests that it is more expensive to recruit a new customer than to retain an existing
customer. In order to retain existing customers, academics and practitioners have developed churn pre-
diction models to effectively manage customer churn. In this paper, we propose two genetic-algorithm
(GA) based neural network (NN) models to predict customer churn in subscription of wireless services.
Our first GA based NN model uses a cross entropy based criterion to predict customer churn, and our sec-
ond GA based NN model attempts to directly maximize the prediction accuracy of customer churn. Using
real-world cellular wireless services dataset and three different sizes of NNs, we compare the two GA
based NN models with a statistical z-score model using several model evaluation criteria, which include
prediction accuracy, top 10% decile lift and area under receiver operating characteristics (ROC) curve. The
results of our experiments indicate that both GA based NN models outperform the statistical z-score
model on all performance criteria. Further, we observe that medium sized NNs perform best and the cross

Keywords:
Genetic algorithm
Neural networks
Churn prediction

entropy based criterion may be more resistant to overfitting outliers in training dataset.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, Customer Relationship Management (CRM)
systems have replaced traditional mass marketing strategies by
selective marketing practices (Burez & Van den Poel, 2006;
Coussement & Van den Poel, 2008). These selective marketing
practices involve identifying a sub-set of existing customers that
are likely to stop using products or services of the company
(churn). There are several data mining models that are proposed
to predict potential customers that are most likely to churn.
Among the popular models to predict customer churn are: neural
networks, support vector machines and logistic regression models
(Baesens, Viaene, Van den Poel, Vanthienen, & Dedene, 2002;
Coussement & Van den Poel, 2008; Hung, Yen, & Wang, 2006).

Data mining research suggests that for non-parametric datasets,
machine learning techniques, such as neural networks, often out-
perform statistical and structurally restrictive techniques such as
linear and quadratic discriminant analysis approaches (Baesens

* The wireless telecommunication subscription services dataset used in this study
was provided by the Teradata Center for Customer Relationship Management at
Duke University.

* Tel.: +1 717 948 6028; fax: +1 717 948 6456.
E-mail address: pxp19@psu.edu
URL: http://www.personal.psu.edu/pxp19/.

0957-4174/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2008.08.050

et al., 2002; Bhattacharyya & Pendharkar, 1998). Additionally, sev-
eral studies have shown that genetic-algorithm based neural net-
works outperform traditional local search gradient descent/
gradient ascent neural networks that use Rumelhart, Hinton, and
Williams (1986) procedure for updating connection weights
(Pendharkar, 2007; Pendharkar & Nanda, 2006; Pendharkar &
Rodger, 2004). However, to our knowledge, there are no published
studies that use genetic-algorithm based neural networks for pre-
dicting churn. Noting the paucity of studies in application of genet-
ic-algorithm based neural networks in predicting customer churn,
in this paper, we use two genetic-algorithm based neural network
models to predict customer churn in cellular wireless network ser-
vices. Since genetic algorithm based neural networks are sensitive
to their network size, we compare different size neural network
models to identify the best performing model. We compare our ge-
netic algorithm based neural network models with a simple statis-
tical z-score based prediction model.

The rest of our paper is organized as follows. In Section 2, we
describe the two genetic algorithm based neural networks used
in our study, and a simple univariate z-score classification model.
In Section 3, we describe different neural network design factors
and performance metrics used to monitor performance of compet-
ing techniques for predicting customer churn. In Section 4, we de-
scribe the real-world wireless services dataset, experiments and
results. In Section 5, we conclude our paper with a summary and
provide a few directions for future work.

mailto:pxp19@psu.edu
http://www.personal.psu.edu/pxp19/
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

P.C. Pendharkar / Expert Systems with Applications 36 (2009) 6714-6720 6715

2. An overview of modeling techniques used in our research

The churn prediction model that we are learning is of type f :
X — {0,1}, where X represents an instance space of training cases;
flx)=1 represents the decision belonging to class one (the cus-
tomer will churn), and f{x) = 0 represents the decision belonging
to class two (the customer will not churn). Assume a data set
S={(x1,51),...,(Xa,5.)} of a examples, where x; is the vector of
decision-making attributes and s; ={0,1} Vj € {1,...,a} is the
known observed value of f{x;). As mentioned in the Introduction
section, there are many different ways to learn the classification
function f{). In this research, we use focus on genetic-algorithm
based neural network approaches.

One of the challenges of learning classification function is to
learn how to deal with inconsistent examples. For example, among
the examples exhibiting same decision-making attributes, a few
may belong to class one and the others to class two. This inconsis-
tency in the data set may be due to lack of data on all attributes
that predict the positive class one outcome. The maximum likeli-
hood neural network (MLNN) attempts to resolve this inconsis-
tency by learning the probability that an example belongs to
class one (Mitchell, 1997). The MLNN learns a probabilistic func-
tion of type g:X — [0,1] such that g(x) is the probability that
flx)=1. Learning in MLNN requires learning of maximum likeli-
hood hypothesis. The maximum likelihood procedure can be de-
scribed as follows:

Assume that x; and s; are random variables, we can write the
conditional probability of data S given a hypothesis h, P(S|h) as
follows:

P(S|h) = Hij,sj\h [1Psilh. x;)P(x)).
j=1

Let h(x;) = P(sj =

P(s;lh,x5) = h(x)" (1 — h(x;))' ¥,

Thus, P(S|h) can be written as follows:

P(S|h) = Hh Xj)’

Let H be set of all possible hypotheses, the maximum likelihood
hypothesis hy; € H can be obtained by dropping the constant prob-
abilities P(x;)’s as follows:

1|h, x;), we can write P(sj|h, x;) as follows:

(1= h(x;))"™P(x)).

hy = arg max Hh x)% (1 —h(x;))"™5.

heH j=1

The above can be simplified by taking the natural logarithm of max-
imum likelihood hypothesis - the log maximum likelihood
hypothesis.

In(hw) = arg max ZS} In(h(x;)) + (1 = s;) In(1 — h(x;)).

heH =1

The negation of the expression s;In(h(x;)) +
called cross entropy (Mitchell, 1997).

When a neural network is used to maximize the log maximum
likelihood hypothesis (minimizing cross entropy), a logistic func-
tion g(x) is often used (Baesens et al., 2002). This logistic function
takes the following form:

g = !

1+ex’
Using the logistic function and using a local search procedure sim-
ilar to one described in Rumelhart et al. (1986), a local search gra-
dient ascent optimization procedure can be developed to learn

(1 —s5;)In(1 - h(x;)) is

connection weights of a neural network so that log maximum like-
lihood hypothesis can be maximized. The details for such an optimi-
zation procedure can be found in Pendharkar (2007) study.

The local search procedures for learning connection weights for
neural networks are widely criticized by researchers (Pendharkar &
Rodger, 2004; Sexton, Allidae, Dorsey, & Johnson, 1998; Sexton,
Dorsey, & Johnson, 1999). Among the criticisms of local search pro-
cedures are tendency to overfit the training data examples, and
convergence to sub-optimal solutions. There are several studies
in the literature that have shown that global search procedures
to learn connection weights of neural networks consistently out-
perform the local search optimization procedures on holdout data
samples (Pendharkar, 2007; Pendharkar & Rodger, 2004; Sexton
et al., 1998, 1999).

There are a few differences between local search optimization
and global search procedures. Local search procedures have strong
theoretical foundations in applied mathematics and assume conti-
nuity and differentiability of optimization function to guide the
search for an optimal solution. Global search procedures, which in-
clude genetic algorithms, tabu search and simulated annealing; do
not require differentiability of optimization function, and search
for an optimal solution using heuristic strategies. The relaxation
of the constraint that an optimization function has to be differen-
tiable makes global search procedures very flexible to use in real-
world decision-making situations. For example, complex single/
multiple criteria classification functions for minimizing misclassifi-
cation cost or minimize misclassification and information acquisi-
tion cost remain a challenge for calculus based methods, but these
functions can be easily used with heuristic search strategies.

In our research, we use heuristic global search genetic algo-
rithms to learning connection weights of a neural network. A ge-
netic algorithm (GA) uses the survival of the fittest heuristic to
learn connection weights of a neural network. Fig. 1 illustrates
how connection weights of a neural network are represented as
genes in a GA population member. The connection weights
represented by horizontal arrows represent the bias connection
weights.

Output Layer

Hidden Layer

Artificial Neural Network
)\

Input Layer

!

A Genetic Algorithm Population Member

Fig. 1. A genetic algorithm representation of an artificial neural network.

6716 P.C. Pendharkar / Expert Systems with Applications 36 (2009) 6714-6720

A GA population consists of several population members, which
work in parallel to identify a best solution. Special search operators
(evaluation, selection, crossover, and mutation) are used to bias the
search towards promising solutions. A GA population member may
be represented using either a binary representation or a real attri-
bute representation. In our research, we use the real-attribute rep-
resentation. Using the real-attribute representation, an initial
population is generated by assigning random real numbers as the
values of genes in each of the population members of a GA popu-
lation. Next, a fitness evaluation operator is applied to evaluate
the fitness of each individual. The evaluation function can be either
maximize the total number of correctly classified cases or maxi-
mize the log maximum likelihood hypothesis. After the fitness
evaluation, a selection operator is applied to select the population
members with higher fitness (so that they can be assigned higher
probability for survival). Under selection operator, individual pop-
ulation members may be allowed to live or die. There are several
selection operators reported in the literature. Among the popular
selection operators are ranking and tournament selection. We
use tournament selection operator because Goldberg and Deb
(1992) showed that while both ranking and tournament selection
maintain strong population fitness growth potential, tournament
selection operator requires lower computational overhead. In a
tournament selection operator two parents are selected probabilis-
tically based on their fitness, where high fitness population mem-
bers have higher chance of selection. Crossover and mutation
operators are applied to these two parents with certain probabili-
ties called crossover probability and mutation rate to generate two
children. The process of selection, crossover and mutation is re-
peated so that the total number of children is equal to the popula-
tion size. This new population of children is called the next
generation population.

There are several crossover and mutation operators available in
the literature. Pendharkar and Rodger (2004) study reports a few of
these different crossover operators, and report a superior perfor-
mance of a crossover operator called the arithmetic crossover.
The arithmetic crossover consists of generating children in a way
such that every gene in a child is a convex combination of genes
from its two selected parents. We use the arithmetic crossover
operator in our study. Further, we use a single gene mutation oper-
ator, where each gene in a child, with probability equal to mutation
rate, is randomly changed with a random real number.

Fig. 2 illustrates the GA procedure used in our research. We use
two different GA based neural network models. The only difference

Genetic Algorithm Procedure

Generation < 0
Initialize Random Population
Evaluate Fitness of the Initial Population
Repeat
Generation < Generation+1
Tournament Selection Operation
Crossover Operation
Mutation Operation
Evaluate Fitness of New Population

If (Generation > maximum generations)Then Done

Until Done

Fig. 2. The pseudo-code for GA procedure used in learning connection weights.

Prob.
Class 1~N (w=1,01=1)
0.4}

Class 2~N (U2=5,02=1)

0.3

0.1

-2 2 4 6 8

Fig. 3. Univariate statistical classification.

in the two models is the way fitness of a population member is
computed. In our first model, the first fitness function maximizes
the total number of correct classifications; we call this model
GA-based neural network (GANN) model. In our second model,
the fitness function maximizes the log maximum likelihood
hypothesis (or minimizes cross entropy); we call this approach
as maximum-likelihood GANN (MLGANN).

In order to benchmark the performance of our GA based NN
models, we use a simple statistical z-score model. This simple sta-
tistical z-score model assumes a single continuous variable that is
generated from two different normal probability density functions
(pdfs) with each pdf constituting a class distribution for a two class
classification problem. Fig. 3 illustrates an example of such a clas-
sification problem with two classes with class means, @; =1 and
U>=5; and standard deviations, ¢; =0, =1, respectively. Since
the pdf for both classes is normally distributed, the cutoff value
of x, given by x., can be calculated by following equation (Liang,
1992).

o _ 1k + Ol
¢ g1+0y

The cutoff value x. provides a basic threshold for the classification of
an unclassified example taking a specific value x’. This unclassified
example can be classified using the following rule (Liang, 1992).

IF x* < x. THEN class 1.
Else class 2.

Since the pdfs for both classes are normal distributions, z-score val-
ues can be used to compute the probability that the example x‘ be-
longs to a given class. For example, the z-value of the example x' for
class 1 (z') and class 2 (z?) can be computed as: z! (%) and
z (%). Once the z-values are known they can be used to compute
the area under the standard normal distribution to compute the
probability that the example belongs to a given class.

3. Neural network design factors and model evaluation criteria

Among the factors that impact the performance of a NN are the
network architecture and number of hidden nodes in a NN
(Patuwo, Hu, & Hung, 1993). The architecture of an NN consists
of a two-layer NN or a three layer NN. A two layer ANN is suitable
for learning linear or quadratic classification functions (Patuwo
et al.,, 1993). However, a three-layer NN can learn any desired clas-
sification function. It is possible to have more than three-layers,
but the literature suggests that having more than three layers

P.C. Pendharkar / Expert Systems with Applications 36 (2009) 6714-6720 6717

may not result in significant performance improvements (Patuwo
et al.,, 1993). Thus, in our study, we use a three-layer NN.

If a three-layer NN is chosen for learning classification function
then a decision-maker has to select the number of hidden nodes in
the hidden layer (Patuwo et al., 1993; Pendharkar, 2002). Increas-
ing the number of hidden nodes in an NN increases the training
performance for an NN, but often results in poor generalization
(Patuwo et al., 1993; Pendharkar, 2002). For n inputs, Pendharkar
(2002) suggests trying at least three different configurations each
with the number of hidden nodes equal to n, 2n, and 3n.

The literature on classification provides several criteria to eval-
uate classification models. A common performance metric for clas-
sification problems is the accuracy measured as either the total
number of correct classifications or percentage of correct classifica-
tions (Bhattacharyya & Pendharkar, 1998; Patuwo et al., 1993). The
accuracy performance metric may not be a good performance met-
ric when the data sets are biased in that they have uneven distri-
bution of examples belonging to any one particular class (Han &
Kamber, 2006). For example, a medical dataset containing 90%
cases of healthy patients and 10% cases of breast cancer, a simple
prediction of healthy status for all examples in the database will
lead to 90% accuracy. To account for uneven class distribution in
training and test datasets, two additional performance metrics
called sensitivity and specificity are used in the literature (Han &
Kamber, 2006).

Assume a binary classification problem with two classes, posi-
tives and negatives. Assume that a classifier correctly classifies cer-
tain examples belonging to the positive class, and the value of such
correct classification is given by the variable t_pos. Similarly, let the
correct number of classifications for the negative class be given by
the variable t_neg. If the variables pos and neg denote the number
of examples belonging to the positive and the negative class in the
training data then sensitivity, specificity and accuracy performance
metrics are given by the following expressions (Han & Kamber,
2006).

e t_
sensitivity = Lpos OS,
pos
o s t_neg
specificity = —=
. pos o neg
accuracy = sensitivity x —————— 4 specificity x ———=——.
y y (pos + neg) P y (pos + neg)

While sensitivity and specificity are useful criteria when data-
sets are biased, several researchers suggest that traditional criteria
(accuracy, sensitivity and specificity) do not consider asymmetries
in misclassification costs. Since most real-world decision making
situations involve unequal misclassification costs (Baesens et al.,
2002) and these misclassification costs are hard to estimate and
are subject to change frequently (Fawcett & Provost, 1997), several
researchers suggest developing a receiver operating characteristic
(ROC) curve for a classifier. The ROC is drawn by plotting sensitiv-
ity values on y-axis and false positive rate (1-specificity) on x-axis.
A ROC curve is a very robust measurement criterion that measures
classifiers independent of class distribution and misclassification
error cost (Tan, Steinbach, & Kumar, 2006). The ROC curve requires
classifiers to generate continuous value attributes. If a classifier
generates discrete output then ROC curve cannot be drawn, and
only sensitivity and specificity ratios can be reported (Tan et al.,
2006). Since all of our models provide continuous output, we use
ROC curve to compare our classifiers.

Churn studies often use a top 10% decile lift performance metric
to evaluate classifiers (Coussement and Van den Poel, 2008). To
construct a top 10% decile lift, the unclassified cases are first sorted
in descending order based on the likelihood that the case will be
characterized as churn. Next, top 10% of cases are extracted from

the sorted set. The ratio of the percentage of correct classification
of churners in this top 10% of cases with the percentage of actual
churners in the entire holdout dataset provides the 10% decile lift
(Coussement and Van den Poel, 2008). The higher value of top
10% decile lift is a hallmark of a good classifier. We use the top
10% decile lift performance metric to compare our classifiers.

4. Data, experiment and results

The dataset used in our study was provided by the Teradata
Center for Customer Relationship Management at Duke University.
The data set contained real-world customer information on 195,
956 customers from a wireless company. There were six attributes
for each record. These six attributes were: subscriber ID number,
billing month, subscription plan, monthly total peak usage in min-
utes, promotional mailing variable, and churn indicator. We do not
use subscriber ID number and billing month information in our re-
search. The subscription plan variable took four discrete values as
shown in Table 1. For each plan, the first column contains the ac-
tual value of variable in the dataset. The second column contains
the maximum peak minutes allowed in the plan, the third column
contains the monthly cost for using the peak minute service for
less than or equal to peak minutes, and the fourth column contains
the cost per minutes that the customer has to pay for the ongoing
or new peak minute calls that extend beyond the maximum peak
minutes limit covered by the plan. The promotional mailing vari-
able and churn variables were binary variables, and the monthly
total peak usage in minutes variable was a continuous variable.

For our NN classification models, we considered three variables
- subscription plan, monthly total peak usage in minutes, and pro-
motional mailing variable - as inputs, and churn variable as an out-
put. For our z-score classification model, we computed two churn
class means and standard deviations for monthly total peak usage
for each of subscription plan variable value and promotional mail-
ing variable combinations for the training dataset.! Depending on
the unclassified example’s subscription variable value and promo-
tional mailing variable value, we used the appropriate two class
means and standard deviation pair and used the example’s total
peak usage in minutes to compute z-values for each class. Once
the z-value information was available, the example was classified
into appropriate class by considering the probabilities that the
example belongs to each of the two churn classes.

For our experiments, we split the original set of 195, 956 exam-
ples, into five training and holdout sample pairs. Each training and
holdout sample pair had approximately 70% of the original 195,
956 examples in the training dataset and remaining 30% of the
examples are used to create a holdout sample dataset. We used a
C++ program with a random number generator to create these 5
training and holdout sample pairs. For each of 195, 956 examples,
the random number generator generated a random value between
0 and 1. If this random value was less than or equal to 0.7 then the
example was copied into the training dataset, otherwise, it was
copied to the holdout dataset. Using this approach to split the ori-
ginal set of 195, 956 examples, we used five different random seed
values to create five different training and holdout data sample
pairs. Each training and holdout sample pair contained non-over-
lapping examples and when all the examples from a given training
and holdout sample pair were combined, the total was exactly
equal to original 195, 956 examples.

We implemented the NN and z-score models in the C++ pro-
gramming language. Everything from reading the input datasets

! Since subscription plan variable can take one of four discrete values and
promotional mailing variable can take one of two discrete values, there were 4 x 2 =8
unique subscription plan and promotional mailing variable combinations.

6718 P.C. Pendharkar / Expert Systems with Applications 36 (2009) 6714-6720

Table 1
The wireless services subscription plan

Subscription variable value Number of minutes Cost ($) Price/minute
1 200 30 $0.40
2 300 35 $0.40
3 350 40 $0.40
4 500 50 $0.40

(training and holdout), learning and computing the ROC curve was
implemented in the source code. Additionally, for the z-score mod-
el, we implemented the source code to compute the z-score, and
class probabilities associated with the z-score.

We use each of the training and holdout sample pairs for our
experiments. Since we had five pairs, we performed a total of five
experiments of the z-score model. For each experiment with the z-
score model, we use the training dataset to learn the means and
standard deviations for two classes (churn and no churn) for each
of subscription variable value and promotional mailing variable va-
lue combination. Using these means and standard deviations, we
classify the examples in the holdout sample. All of our experiments
were conducted on a PC with a 2.8 GHZ Pentium processer and
1 GB of RAM. Table 2 illustrates the results of our z-score model.
The CPU time represents the time it took to learn the two class
means and standard deviations for all of subscription plan variable
value and promotional mailing variable value combinations using
the training data.

For our NN experiments, we use the same pair of five training
and holdout sample pairs for each of GANN and MLGANN models
described in Section 2. For each neural network model and pair
of training and holdout data sample, we conduct three different
tests — one each for number of hidden nodes equal to three, six
and nine respectively. The values of GA parameters were selected
by conducting initial experimentation. These values were: cross-
over rate=0.3, mutation rate=0.1, maximum learning genera-
tions = 500, and population size = 50. Unlike the z-score model,
the neural network models, depending on the number of hidden
nodes, needed a learning time of between 2 h to about 6 h. Table
3 illustrates the holdout sample results for the cross-entropy
objective function based MLGANN model, and Table 4 illustrates
the holdout sample results for the correct classification objective
function based GANN model.

The results from Tables 3 and 4 indicate that both neural net-
work models perform very similarly in regards to correct classifica-
tion criterion. Additionally, the number of hidden nodes does not
appear to impact the correct classification performance of the neu-
ral network models as the correct classification percentage re-
mains unchanged for different values of hidden nodes. However,
the decile lift numbers seem to favor six hidden nodes model for
the GANN model and nine hidden nodes model for the MLGANN
model.

We compare the three classification models based on the ROC
curve performance metric. While the ROC curve data was gener-
ated for each of our experiments, the individual ROC curves for
each model were somewhat similar and we only report ROC curves

Table 2
The holdout sample results for the z-score model based classification

Experiment number Correct classification (%) 10% Decile lift =~ CPU time

1 68.7 1.349 Less than 1s
2 66.2 1.063 Less than 1s
3 74 1.219 Less than 1s
4 75.8 1.285 Less than 1s
5 54.9 1.342 Less than 1s

Table 3
The holdout sample results for the MLGANN model based classification
No. of hidden Experiment Correct 10% CPU time in
nodes number classification (%) Decile lift seconds
3 1 97.5 3.599 7204
2 97.4 3.789 6737
3 97.4 3.699 7591
4 97.6 3.657 6790
5 97.6 3.991 6799
6 1 97.5 3.654 14,287
2 974 3.769 14,400
3 97.4 3.780 16,415
4 97.6 3.636 13,410
5 97.6 3.991 14,952
<) 1 97.5 3.578 19,723
2 97.4 3.809 20,753
3 97.4 3.834 21,771
4 97.6 3.671 20,227
5 97.6 3.991 19,720
Table 4
The holdout sample results for the GANN model based classification
No. of hidden Experiment Correct 10% CPU time in
nodes number classification (%) Decile lift seconds
3 1 97.5 3.688 8606
2 97.4 3.803 8433
3 97.4 3.759 8252
4 97.6 3.693 8233
5 97.6 3.969 8235
6 1 97.5 3.647 14,172
2 97.4 3.816 15,577
3 97.4 3.780 14,161
4 97.6 3.678 14,361
5 97.6 3.969 13,983
5) 1 97.5 3.578 20,673
2 97.4 3.749 22,032
3 97.4 3.787 21,212
4 97.6 3.572 20,886
5 97.6 3.833 20,808

for our best performing experiment number 5 as both the correct
classification and the decile lift values for this experiment were
generally higher than the other experiments. Figs. 4-6 illustrate
the ROC curves for the three different models and three different

1.2

I

Vs

| el

]

Sensitivity
o
(o))
]

] : r@?((== 7-Score
0.4+

| / MLGANN
027 GANN

T T T
0 0.2 0.4 0.6 0.8 1 1.2
False Positive Rate

Fig. 4. The ROC curve for 3-hidden nodes NN and z-score models for 5th
experiment.

P.C. Pendharkar / Expert Systems with Applications 36 (2009) 6714-6720 6719

1.2

o
o0

Sensitivity
(=]
(=)}

e 7-ScCOTE

0.4
----- MLGANN
0.2
GANN
0
0 0.2 0.4 0.6 0.8 1 1.2

False Positive Rate

Fig. 5. The ROC curve for 6-hidden nodes NN and z-score models for 5th
experiment.

1.2

|
{

Sensitivity
o o
(o)) o]

3 7-Score

.

f)
[/ ----- MLGANN
0.2 —V GANN
0 Ju T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2

False Positive Rate

Fig. 6. The ROC curve for 9-hidden nodes NN and z-score models for 5th
experiment.

numbers of hidden nodes. Since experiment number 5 was per-
formed only once for the z-score model, the ROC curve for z-score
model remains unchanged in all three figures.

When the area under the ROC curve is considered, the impact of
neural network architecture (in terms of hidden nodes) becomes
clearer. While both neural network models dominate the z-score
model in all the performance metrics, it appears that larger size
neural network models (those containing 9 hidden nodes) appear
to have lower area under the ROC curve than the medium sized
(6 hidden nodes) and small sized (3 hidden nodes) models. Further,
the performances of two neural network models, GANN and MLG-
ANN, were very similar. Considering all the performance metrics,
we believe that the six hidden node GANN model may be a good
model for our experiments. We emphasize the word “good” be-
cause our assessment does not have a strong statistical basis. Sta-
tistically, the GANN and MLGANN models do not show any
significant difference in performance.

While the neural network models perform better than the z-
score model, the z-score model is computationally very efficient.
The learning phase of the z-score model takes less than one second,
whereas, depending on the network architecture, neural network
models take several hours to predict potential churners.

5. Summary, conclusions and directions for future work

We have developed and used genetic algorithm based neural
networks for predicting potential churn in cellular wireless ser-
vices. Using a real-world data, we have tested our genetic algo-
rithm based neural network models and compared these models
with a statistical z-score model. The results of our experiments
indicate that the genetic algorithm based neural networks per-
form better than the z-score model, but are computationally
expensive. We have also found that the number of hidden nodes
in a neural network plays some role in the predictive performance.
Specifically, medium size neural networks (with number of hidden
nodes equal to twice the number of inputs) appear to perform
well.

Since our dataset contained only three inputs, we used all the
available inputs for learning connection weights for the genetic
algorithm based neural network models. We believe that our fit-
ness functions can be modified to rank the relevant inputs. For
example, Baesens et al. (2002) illustrated how Bayesian ap-
proaches can be used to rank relevant inputs in neural networks.
While their approach, due to the assumption that the objective
function can be differentiated, cannot be directly used in our case,
we believe that the GA objective function can be modified in a way
that input relevance can be computed directly. We also believe
that the parallel global search behavior of the GA may be beneficial
in computing the input relevance directly. Input relevance ranking
will increase the computational overhead of our algorithms. An
efficient integration of selection of inputs and dynamic selection
of number of hidden nodes in a genetic algorithm based neural net-
works is a potentially promising area of future research.

Acknowledgements

I thank the Teradata Center for Customer Relationship Manage-
ment at Duke University for providing me the cellular wireless ser-
vices data used in this research.

References

Baesens, B., Viaene, S., Van den Poel, D., Vanthienen, J., & Dedene, G. (2002).
Bayesian neural network learning for repeat purchase modeling in direct
marketing. European Journal of Operational Research, 138(1), 191-211.

Bhattacharyya, S., & Pendharkar, P. C. (1998). Inductive, evolutionary and neural
techniques for discrimination: A comparative study. Decision Sciences, 29,
871-900.

Burez, J., & Van den Poel, D. (2006). CRM at a Pay-TV Company: Using analytical
models to reduce customer attrition by targeted marketing for subscription
services. Expert Systems with Applications, 32(2), 277-288.

Coussement, K., & Van den Poel, D. (2008). Churn prediction in subscription
services: An application of support vector machines while comparing two
parameter-selection techniques. Expert Systems with Applications, 34(1),
313-327.

Fawcett, T., & Provost, F. (1997). Adaptive fraud detection. Data Mining and
Knowledge Discovery, 1-3, 291-316.

Goldberg, D. E., & Deb, K. (1992). A comparative analysis of selection schemes used
in genetic algorithms. In G. Rawlins (Ed.), Foundations of genetic algorithms
(pp. 69-93). San Mateo, CA: Morgan Kaufmann.

Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques. San Francisco,
CA: Morgan Kaufmann Publishers.

Hung, S. Y., Yen, D. C, & Wang, H. Y. (2006). Applying data mining to
telecomm churn management. Expert Systems with Applications, 31(3),
515-524.

Liang, T. P. (1992). A composite approach to inducing knowledge for expert systems.
Management Science, 38(1), 1-17.

Mitchell, T. M. (1997). Machine learning. New York, NY: McGraw-Hill.

Patuwo, E., Hu, M. Y., & Hung, M. S. (1993). Two group classification problem using
neural networks. Decision Sciences, 24(4), 825-846.

Pendharkar, P. C. (2002). A computational study on the performance of ANNs under
changing structural design and data distributions. European Journal of
Operational Research, 138, 155-177.

Pendharkar, P. C. (2007). A comparison of gradient ascent, gradient descent and
genetic-algorithm based artificial neural networks for the binary classification
problem. Expert Systems, 24(2), 65-86.

6720

Pendharkar, P. C, & Nanda, S. (2006). A misclassification cost minimizing
evolutionary-neural classification approach. Naval Research Logistics, 53(5),
432-447.

Pendharkar, P. C., & Rodger,]. A. (2004). An empirical study of impact of crossover
operators on the performance of non-binary genetic algorithm based neural
approaches for classification. Computers and Operations Research, 31, 481-498.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Parallel distributed processing:
Explorations in the microstructure of cognition. Chapter on learning internal
representations by error propagation (Vol. 1, pp. 318-362). MIT Press.

P.C. Pendharkar / Expert Systems with Applications 36 (2009) 6714-6720

Sexton, R. S., Allidae, B., Dorsey, R. E., & Johnson, J. D. (1998). Global optimization of
artificial neural networks: A tabu search application. European Journal of
Operational Research, 106, 570-584.

Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1999). Optimization of neural
networks: A comparative analysis of the genetic algorithms and
simulated annealing. European Journal of Operational Research, 114,
589-601.

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Boston,
MA: Addison Wesley Publishing.

	Genetic algorithm based neural network approaches for predicting churn in cellular wireless network services
	Introduction
	An overview of modeling techniques used in our research
	Neural network design factors and model evaluation criteria
	Data, experiment and results
	Summary, conclusions and directions for future work
	Acknowledgements
	References

