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a b s t r a c t

The use of large-scale electrophysiology to obtain high spatiotemporal resolution brain recordings (>100
channels) capable of probing the range of neural activity from local field potential oscillations to single-
neuron action potentials presents new challenges for data acquisition, storage, and analysis. Our group is
currently performing continuous, long-term electrophysiological recordings in human subjects undergo-
ing evaluation for epilepsy surgery using hybrid intracranial electrodes composed of up to 320 micro- and
clinical macroelectrode arrays. DC-capable amplifiers, sampling at 32 kHz per channel with 18-bits of A/D
resolution are capable of resolving extracellular voltages spanning single-neuron action potentials, high
frequency oscillations, and high amplitude ultra-slow activity, but this approach generates 3 terabytes of
ange encoding
ata encryption
yclic redundancy codes
ultiscale electrophysiology format

data per day (at 4 bytes per sample) using current data formats. Data compression can provide several
practical benefits, but only if data can be compressed and appended to files in real-time in a format that
allows random access to data segments of varying size. Here we describe a state-of-the-art, scalable,
electrophysiology platform designed for acquisition, compression, encryption, and storage of large-scale
data. Data are stored in a file format that incorporates lossless data compression using range-encoded
differences, a 32-bit cyclically redundant checksum to ensure data integrity, and 128-bit encryption for

rmati
protection of patient info

. Introduction

Large-scale electrophysiology recordings are recognized as a
owerful tool for systems neurobiology and investigation of normal
nd pathological brain function (Buzsaki, 2004). Continuous, high,
patial and temporal resolution intracranial electroencephalogra-
hy (iEEG) and single-neuron recordings from humans are being
sed to investigate cognitive function, e.g. (Kraskov et al., 2007;
elbard-Sagiv et al., 2008). There is accumulating evidence that

he bandwidth used for clinical iEEG is inadequate, and that high
requency oscillations can localize epileptogenic brain (Gardner et
l., 2007; Bragin et al., 2002; Urrestarazu et al., 2007; Worrell et

l., 2004, 2008). These opportunities have not been fully exploited,
owever, due to limitations in recording and storage technologies
hat have required scientists and clinicians to limit data acquisition
irectly by reducing the duration, number of channels, sampling

∗ Corresponding author at: Department of Neurology, 200 First St. SW, Rochester,
N 55905, USA. Tel.: +1 507 774 3351; fax: +1 507 284 4795.

E-mail address: Stead.Squire@mayo.edu (M. Stead).
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on.
© 2009 Elsevier B.V. All rights reserved.

rate or resolution of recordings in order to generate manageable
amounts of data. For example, acquisition of “single unit” data (i.e.,
the extracellular action potentials from individual neurons) rou-
tinely requires users to set a fixed voltage threshold prior to the
start of recording. When the electrode voltage exceeds this thresh-
old, a limited-duration window of samples surrounding this event is
stored and all other samples are discarded. Clearly, post hoc analysis
is then limited to the acquired waveforms, no further data windows
can be extracted, and no relationship to other EEG features (e.g.,
phase, energy) can be generated. A preferred solution would be to
record all samples in a compressed file format and then thresh-
old the data offline, allowing the user to optimize detections with
regard to the amount of data to analyze. The technology for acqui-
sition of wide-bandwidth electrophysiology (high channel count,
high input impedance, DC-capable amplifiers, per-channel sam-
pling rate of 32 kHz, 18-bit signal digitization) from high-density

hybrid electrode arrays now makes it possible to record the full,
physiological range of brain activity, from single-neuron action
potentials to high amplitude ultraslow field potential oscillations.
However, the massive amounts of data produced by these record-
ings (i.e., “Big Data”) present unique, “biocuration,” or data sharing

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:Stead.Squire@mayo.edu
dx.doi.org/10.1016/j.jneumeth.2009.03.022
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ig. 1. Left) Photographic montage of hybrid subdural grid containing 16 clinical ma
nd depth electrodes. MRI of hippocampal hybrid depth implant (below).

nd interpretation challenges for institutional and laboratory infor-
ation technology infrastructure (Howe et al., 2008).
At our institution, large-scale recordings from patients under-

oing evaluation for epilepsy surgery are obtained using hybrid
lectrodes containing microwires and clinical macroelectrodes
Van Gompel et al., 2008a,b; Worrell et al., 2008) (Fig. 1). This
pproach requires the infrastructure to transfer, store and manage
p to 40 megabytes per second, 140 gigabytes of data per hour,
r 3.3 terabytes per day (at 4 bytes/sample). Using current elec-
rophysiology data storage methods, a typical patient recording (7
ays) would require 23 terabytes of disk space for storage. Fur-

hermore, conventional EEG data file formats typically bundle all
he recorded channels into a single large file, making data analy-
is, storage, and transfer all the more unwieldy. Here we describe
ur approach to acquisition, compression, storage and manage-
ent of data obtained from large-scale electrophysiological studies

ig. 2. Large-scale human electrophysiology acquisition system streams data from the pa
tored on a 70 terabyte storage pool. Data are accessed via a fiber channel Service Area Ne
ectrodes (4 mm) and 112 microelectrodes. Right) Schematic of hybrid subdural grid

required for investigation of systems neurobiology of brain function
and disease.

At the core of our approach is a scalable (up to 1024 chan-
nels) acquisition system, large-scale storage area network (SAN)
database, and a novel electrophysiology file format, called MEF
(Multiscale Electrophysiology Format) (Fig. 2). MEF achieves sig-
nificant data size reduction when compared to existing formats
(e.g., Neuralynx DMA format, EDF+ (Kemp et al., 1992; Kemp and
Olivan, 2003), Extensible Biosignal Format (EBS) (Hellmann et al.,
1996)) using state-of-the-art lossless data compression (Bodden et
al., 2002; Martin, 1979) and is designed for efficient data transfer,

storage and analysis. In addition, MEF satisfies the Health Insurance
Portability and Accountability Act (HIPAA) requiring any patient
protected health information transmitted over a public network
to be encrypted with a minimum 112-bit symmetric encryption
[Federal Register 2003]. Sharing electrophysiology data for research

tient’s room to the acquisition node via a dedicated dual-Gigabit Ethernet. Data are
twork. Large-scale analysis is performed on a dedicated computational cluster.
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Fig. 3. Data flow schematic. Data acquisition creates files stored in a range of data-
type-specific formats. Storing continuously sampled data normally constitutes the
largest component of the dataset, which allows data compression to reduce overall
B.H. Brinkmann et al. / Journal of Ne

urposes requires encryption or elimination of patient informa-
ion to maintain compliance with HIPAA regulations. Encryption
f patient identifying information within the file with an appro-
riate algorithm represents an elegant solution for maintaining
atient confidentiality, while obviating the need for specialized,
ecure transfer protocols, and reducing the potential to lose rel-
vant information or cause record keeping errors in research data.
he existence of data warehouses and the capability to easily and
eliably share massive data volumes among researchers has had
n enormous impact in genomics and imaging (Howe et al., 2008),
nd we anticipate that in the near future advances in human and
nimal systems neurobiology will be accelerated by the creation of
arge-scale human and animal electrophysiology databases (Lynch,
008).

. Methods

.1. Protocol for large-scale electrophysiology

The data reported here are from a Mayo Clinic IRB approved
nvestigations of wide-bandwidth electrophysiology recorded from
ybrid electrodes in patients undergoing evaluation for epilepsy
urgery. The need for intracranial EEG monitoring is a clinical
ecision made by a multi-disciplinary epilepsy surgery conference
ith members from neurosurgery, neurology, neuroradiology, and
europsychology. The location, number and type of intracranial
lectrodes to be implanted (depth, subdural grid, and strip elec-
rodes) is determined by consensus at the clinical conference. The
esearch protocol involves replacing standard clinical electrodes
ith custom hybrid electrodes. The only difference between the

ybrid and clinical electrodes are the microwire arrays (Fig. 1) (Van
ompel et al., 2008a,b; Worrell et al., 2008). The hybrid depth
nd subdural electrodes contain standard clinical macroelectrodes
nd additional microwire arrays (40 �m Platinum/Iridium wires
paced 0.5–1 mm), and are manufactured by Adtech Medical Instru-
ent Corporation, Racine, WI and PMT Chanhassen, MN US under
510 K.

.2. Platform for collecting and warehousing large-scale human
lectrophysiology

The capability for collecting, warehousing, and mining wide-
andwidth electrophysiology over multiple spatial scales was
riginally developed to probe the fine structure of human epilep-
ic brain (Fig. 2). A scalable (32–320 channels) acquisition platform
apable of continuous long-term recording was developed in col-
aboration with Neuralynx Inc. (http://www.Neuralynx.com). The
igital-Lynx system is unique in that it uses an individual, high res-
lution, 24 bit A/D converter per channel to directly digitize the
lectrode signal using a single, DC-coupled, low noise differential
mplifier and anti-aliasing filter (low pass 9 kHz). All channels are
imultaneously sampled at 32 kHz with a DC to 8 kHz signal band-
idth. This high resolution design provides a dynamic input range

f ±132 mV with 1 �V resolution (18th bit). All sampled data is
acketized and transferred to a PC over a fiber optic data link at
00 Mbits/s.

The Hybrid Array 40 �m Microwires exhibit a characteristic
igh impedance (200–500 kohms) and the high frequency, weak
ulti-unit signals (<100 �v) will be degraded by noise and atten-

ation if not buffered/amplified in close proximity to the brain. An

ctive 32 channel buffered electrode interface was developed for
C-stable microwire/clinical electrode recording and incorporates
lectrode impedance measurement and patient safety circuitry
n a compact package which can be placed on the headwrap.
his interface allows individual references for each group of 8
storage requirements significantly. Permanent storage of events and metadata in a
relational database provides a flexible and reliable storage mechanism that allows
subsequent integration of analysis information.

microwires and has proven advantageous for multiple-single unit
classification.

The fiber optic connection transfers data to the Neuralynx
Cheetah software system. This software package allows for data
management, disk file recording of the continuous high resolution
sampled data and on-line analysis, processing and display of sin-
gle unit and scrolling EEG waveforms. The data are then archived
to a 70 TB storage area network library using a custom file format
(MEF) created for efficient data transfer, compression, annotation,
archival and retrieval. A SAN is a scalable data storage solution that
divides data across multiple hard disk drives to increase data relia-
bility and access speed, and presents the data in such a way that the
multiple storage devices appear as a single locally attached volume
to the client operating systems. Clinical data are acquired in parallel
with an EMU-128 XLTek system (XLTek Inc.). All clinical decisions
are based on the clinical XLTek recordings.

On-line event notations and information for all recorded chan-
nels are stored in a single separate Extensible Markup Language
(XML) event file (Fig. 3). The event file and all the associated chan-
nel files contain identical 8-byte unique ID (UID) numbers in their
unencrypted header blocks in order to validate the association of
event and channel files. Event files contain such things as video syn-
chronization records, data annotations, seizure onsets, behavioral
state, unit firing, etc. The event file structure consists of variable
length XML records, allowing creation of custom event types with-
out disabling existing software that may be unaware of the new
event type. This format can also be used to store annotation infor-
mation related to automated event detections in the file, such as

the time of interictal spikes or single-neuron action potentials. We
view the XML file as a transient communication medium created
for import into a general purpose database (e.g., MySQL), which is
better suited to the task of integrating large-scale data of various
types and providing flexible retrieval options.

http://www.neuralynx.com/
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Table 1
The MEF file consists of a file header, composed of one unencrypted and two optionally encrypted sections, a data region, composed of sequential data blocks containing
block header and compressed data regions, and a block index section, which gives the file offset to each compressed block in the data region.

File Region Section Offset Length Contents

Header
No Encryption 0 176 Institution name, encryption algorithm and usage, file version,

header length, byte order

Subject Encryption 176 160 Subject first, middle, and last names, and ID number
Session Encryption 352 452 Number of samples, channel name, recording times, filter

settings, maximum block size and length, offset to and number
of index entries, max and min recorded values

Data
Block Header 1024 277 Compressed block length, difference data length, number of

samples in block, block start time, discontinuity flag, block
statistics
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Compressed Block Variable Variable

lock Indices Variable Variable (24

.3. Multiscale Electrophysiology Format (MEF)

The Multiscale Electrophysiology Format consists of three main
arts: (1) a fixed-length 1024-byte header, containing patient infor-
ation and technical information about the recording, (2) a data

ection, consisting of a series of encoded data blocks, and (3) a time
ndex section, consisting of three 8-byte element blocks holding
lock start time, file offset, and sample index values to facilitate
apid random access to the data (Table 1). Each file’s header begins
ith an unencrypted block of data containing the non-private

echnical information necessary to read and begin decryption (if
eeded) of the file’s header. This data block includes the file’s byte
rder, the file type and version, the length of the header, the encryp-
ion algorithm used, and boolean values denoting whether subject
nd session encryption are used. The next sections of the header
mploy a dual-tiered encryption scheme, with both sections being
ncrypted independently. In particular, a “subject” section con-
ains all the subject-identifying data, while a subsequent “session”
ection contains information regarding data acquisition, such as fil-
er settings and sampling frequency. The session encryption can
ptionally be applied to the leading coefficients of the statistical
odel in the data block headers, making the data impossible to

ecompress without the encryption key. The subject section also
ontains the session password so that if the subject password is
rovided, all header information is accessible. If only the “session”
assword is provided, the subject data remains inaccessible, but
he technical details of the recording necessary for data analysis
an be decrypted. Subject and session encryption use 128-bit AES
ncryption [NIST, 2001] with passwords chosen by the file’s creator.
ncryption is not required, and either subject or session encryption,
r both, may be omitted if desired.

The data section of the file (Table 1) consists of recorded samples
tored in compressed blocks, the length of which can be speci-
ed by the file’s creator. Lossless data compression is accomplished
ia the range-encoded differences (RED) algorithm (Bodden et al.,
002; Martin, 1979). Range encoding is a type of integer arithmetic
ncoding that uses byte-wise scaling to improve encode and decode
peeds. RED compression encodes data in two stages: first, differ-
nces between sequential samples in the data block are computed;
econd, the frequency of difference values is computed. The range
nd frequencies of values in the statistical model are then used to
ncode values within the block. Differencing time-series data effi-
iently reduces its variance, a property that range encoding benefits

ignificantly from, i.e., as the inherent variance in a signal decreases
ts compression ratio increases. A 32-bit cyclically redundant check-
um (CRC) value (Peterson and Brown, 1961; Koopman, 2002) is
alculated from each compressed block and stored as the first entry
n the block’s header, providing the ability to detect data corrup-
Encoded Data

er block) Block start time, file offset to each compressed block, index of
first sample in each block

tion arising from network transmission errors or disk errors during
long-term storage. The block-wise compression scheme used has
the advantage that each compressed data block is independent of
other blocks in the file. In the event that a particular data block is
corrupted due to a disk or network transmission error, the affected
block can be removed with no effect on the remaining data. By
comparison, a single corrupt value in a difference-encoded file
propagates the error to all remaining data in the file. Discontinu-
ities in the recording are indicated by a flag in each block’s header,
and maximum and minimum recorded values in the block are also
stored in the block header to facilitate processing and display. The
compressed data blocks are stored with 8-byte alignment to enable
direct access to header variables, and to facilitate file recovery if
damage to the file results in alignment loss. While data corrup-
tion is a low-probability event, the extreme size of these recordings
and the fact that we access them repeatedly for different analyses
increase the chance of any particular file becoming corrupted. In
addition, the size of these files makes it impractical to keep multi-
ple backup copies, making the ability to detect, isolate, and repair
data errors all the more important.

Following the compressed data blocks is a series of 8-byte inte-
ger triplets encoding the clock time (in microseconds) of the start
of each compressed data block, the file offset to the start of each
block, and index number of the first sample in each block. These
values allow data blocks within the file to be accessed directly
based either on a desired time index or recording sample num-
ber. Time stamps are stored in Microsecond Coordinated Universal
Time (uUTC), which is a variation of standard Unix or Posix UTC time
defined by the number of microseconds since midnight January 1,
1970, GMT (also known as “the epoch”). Microseconds are used to
provide sufficient temporal resolution for EEG recordings without
requiring the use of floating point data types, which are inherently
limited in their precision and can cause errors from truncation of
the least significant bits.

3. Results

To date large-scale electrophysiology recordings were obtained
from a series of 20 patients using subdural and depth hybrid elec-
trodes. Initial results from patients with hybrid depth electrodes
have been previously published (Worrell et al., 2008). Studies are
underway with the patients implanted with hybrid subdural grid
electrodes and will be reported separately. In Fig. 4 a represen-

tative recording from hybrid depth electrodes implanted into the
mesial temporal lobe (amygdala hippocampus) is shown across a
wide range of time scales: 10-h, 10 min, and 10 s. The single chan-
nel of data recorded from a microelectrode demonstrates the long
time scale variability seen over the course of hours (Fig. 4A), an
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Fig. 4. Long-duration, high-frequency, DC-coupled EEG recordings capture all physiologically relevant time scales. A. 10 h of continuous data from a macroelectrode show
a clear DC drift. B. 10 min, expanded view from A shows a spontaneous seizure approximately 16 min into the recording session. C. 10 s expanded view from B from a
m gle neurons. Blue dots show 18 action potentials associated with a single neuron. Da.
E the recorded waveforms. Db. Mean and standard deviation of the 18 action potentials
i to msec).
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icroelectrode (bandpass filtered, 600–6000 Hz) shows action potentials from sin
xpanded view of color-coded action potentials from C showing the similarity of
dentified in C. Note the dynamic range in both voltage (mV to �V) and time (hours

lectrographic seizure discharge (Fig. 4B), and extracellular sin-
le unit activity (Fig. 4C and D). The recordings are notable for
he fact that they span neural activity from single-neuronal units
10−6 V) to extracellular fields of almost a 100 mV. Microelectrode
ata were bandpass filtered between 600 and 6000 Hz, and action
otentials were detected using standard extracellular recording cri-
eria for anatomical location, stability of waveform shape, firing rate
<2 Hz) and multi-modal inter-spike interval distribution (Bower
nd Buckmaster, 2008; Harris et al., 2000).

To demonstrate the benefit of the MEF format, a series of ran-
omly selected 32 kHz macro and microelectrode iEEG channel
ecordings were compressed using RED compression with varying
lock lengths. For our tests we defined the theoretical compression
atio as the ratio of the compressed file size (including the header
nd index block) to the 18-bits of information in each recorded
ample in each file. This would be equivalent to comparing our com-
ressed files to an uncompressed file with 18-bits per sample (i.e.,
bytes for every 4 samples) stored on disk with no sample delim-

ters and no header. For all channels, the data is compressed to less
han 30% of its theoretical size, even with blocks as small as 50 ms,
r 1627 samples (Fig. 5). Data compression improves markedly as

lock sizes increase to 1.0 s (32,556 samples, in our data), with more
odest improvement achieved at larger block sizes.
We also compared the data compression achieved with the MEF

le format to real-world recorded data files in widely used formats.
32 kHz, 395.8 s iEEG recording with 40 channels in Neuralynx

Fig. 5. Theoretical compression ratios for macro- and microwire 32 kHz channel
recordings based on 18 bits of information per sample are plotted against the log of
the compressed block length in seconds. Compression ratios tend to improve with
longer block lengths and increasing number of samples per block. However, gains
beyond 1 s (32,556 samples) are modest and may be outweighed by the advantage
of greater direct access to individual time points with smaller blocks.
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Table 2
Conversion of other file formats into MEF results in significant file size reduction. XLTek data employs a form of difference encoding, so results are less impressive than for
DMA and EDF, which employ no compression.

Format Size Recording Length (s) Number of Channels MEF size Compression Ratio

DMA 7.03 Gb 395.8 40 247.6 Mb 3.44%
X 76 1.91 Gb 40.53%
E 1 150.7 Mb 8.56%

t dynamic range.
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LTeka 4.71 Gb 65267.5
DFa 1.72 Gb 28327.6

a Our XLTek data was sampled at 500 Hz and our XLTek and EDF data had a 16-bi

MA format was converted to MEF format with a 1.0 s block inter-
al, resulting in a net compression ratio of 3.44%, defined as the
ompressed file size divided by the input file size. For the XLTek file
ormat 32 kHz data was not available, so a 500 Hz data file was used.
his file contained 76 recording channels and spanned 65267.5 s.
onversion into MEF format with a 10.0 s block interval resulted

n a 40.53% net compression ratio. Conversion of 28327.6 s of data
tored in EDF to MEF resulted in a net compression ratio of 8.56%
Table 2). It should be noted that because of the formats’ limita-
ions, the XLTek and EDF data files contained only 16 bit sample
esolution.

The ability of the RED compression algorithm to adapt to the
nformation content of the recorded signal was tested by low-pass
ltering data from a microwire and a clinical macrowire channel
ith varying cutoff frequencies between 100 and 9000 Hz, main-

aining sampling frequency. Fig. 6 shows that both files compress
o less than 20% of their theoretical size (18 bit sequential sam-
les) with minimal low-pass filtering (9000 Hz) and approach 3%
ompression at the most aggressive filter levels (100 Hz). Fig. 7
hows similarly improved performance by the compression algo-
ithm for the same recorded data as the stored per-sample bit rate
s decreased from 20 to 16 bits. Theoretical compression ratios were
alculated based on each file’s particular bit rate.

The speed of reading and decompressing MEF data was com-
ared to the speed of reading uncompressed raw 32-bit data from
isk. Varying lengths of an iEEG data were read from a MEF data
le, decompressed, and stored on disk as a binary file of 32-bit
ntegers. Custom software written in C and compiled with the Intel
ompiler version 11.0 (Intel Corporation, Santa Clara, CA) was used
n an Apple Macintosh computer (Apple Inc., Cupertino, CA) run-
ing Mac OS X version 10.5.5 with a 3.2 GHz Intel Xeon 8-Core

ig. 6. The range-encoded difference algorithm improves its compression ratio as
igh-frequency information is removed from the recorded data. Compression ratio
alculations are based on 18-bits of information in each sample. Reported data rep-
esents 2,255,061,204 samples (69,267 s) from a macro electrode (white circles) and
icro electrode (black diamonds). The relatively low impedance of the macroelec-

rode compared to the microelectrode yields a lower thermal noise and better overall
ompression.
Fig. 7. The RED compression algorithm reduces the size of the MEF file as the number
of data bits stored is decreased. Percent compression is reported as the ratio of the
MEF file size to the theoretical size of the data for each bit rate. Data is reported for
2,255,061,204 samples from a macro electrode and a micro electrode.

processor and 32 Gb of RAM to read the raw data from disk, and
to read the corresponding MEF file from disk and decompress
the data into 32-bit integers in memory. The MEF decompres-
sion was single-threaded, removing any potential advantage to the
machine’s multiple processors. As shown in Fig. 8, reading plus
decompression is faster than reading uncompressed data. Further

improvement can be achieved by multithreading the data decom-
pression. (Fig. 9, 325,560,000 samples read.) Data block header
encryption was not used in these examples, but it typically adds
0.5% to the encoding time.

Fig. 8. Reading and decompressing the MEF data from disk is faster than reading
raw 32-bit integer data from disk. Data are reported as the percentage of the raw
32-bit integer read time required to read and decode the corresponding MEF file for
the given number of samples. Raw and MEF read times were measured using one
processor thread on an Apple Macintosh with a 3.2 GHz Intel processor and 32 Gb of
RAM.
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Fig. 9. Multithreading the RED decompression on a multi-processor computer pro-
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effects of data errors to the data block in which errors occur. The
ides a significant speed increase. 325,560,000 samples were read on an 8-processor
ystem with 32 Gb of RAM. Values are expressed as a percentage of the time required
o read an identical number of 32-bit samples from an uncompressed raw data file.

. Discussion

Systems neurobiological data acquisition has always forced
cientists and clinicians to “trade off” one or more aspects of record-
ng to stay within the capabilities of recording equipment and
o produce files containing a manageable volume of data. These
onsiderations have limited the utility of such data to the ques-
ions that originally motivated the acquisition of the data. Current
ecording technology coupled with MEF file format uncouples data
cquisition from storage and analysis constraints, allowing systems
eurobiologists to acquire, store and manipulate all physiologi-
ally relevant data. While the MEF format is flexible enough to
e used with other block-wise compression algorithms, including

ossy algorithms if desired, RED encoding offers significant advan-
ages for lossless compression of time-series data. Principal among
hese advantages are the algorithm’s high lossless compression rate
nd its computational speed. An additional advantage is the algo-
ithm’s ability to adapt to the statistical variation in the raw data,
hich is particularly useful in non-stationary signals such as EEG

Cranstoun et al., 2002), resulting in improved compression ratios
n filtered or slowly varying data without requiring changes to the
lgorithm. The variable block length further permits the user to bal-
nce the overall file compression rate versus quick access to specific
ime points within the file. We typically store our 32 kHz recordings
ith a block size of 1.0 s (32,556 samples), although reasonably

ood compression should be obtainable above 2000 samples per
lock at most sampling frequencies.

With the increasing processor speed of modern computers, the
imiting factor in the speed of data-intensive procedures increas-
ngly becomes access to the data on the computer’s disk drive.

hile data compression does increase the computational load in
ccessing EEG recordings, the reduction in the size of the data on
isc results in a net speed increase, provided the compression algo-
ithm is not overly computationally intensive. Data compression
ill become more important as hospitals increasingly use elec-

ronic patient records and data networks in routine clinical practice.
his problem is more pronounced when transferring files across
he internet, for example between institutions, where data trans-
er rates can be significantly slower. Similarly data compression

as become more important in research studies as collaborators
hare data between labs and institutions. Prior EEG data compres-
ion studies suggest a correlation between the complexity of the
ompression algorithm used and the compression ratio achieved
ience Methods 180 (2009) 185–192 191

(Antoniol and Tonella, 1997). However computational speed is
required to permit real-time compression during data recording, as
well as to facilitate display and processing of previously recorded
data.

The MEF file structure has been designed to facilitate data stor-
age, transmission, access and processing despite the large number
of electrophysiological samples involved. The block structure of
the data makes the file resilient to minor file damage during stor-
age or transmission, as only the damaged block(s) will be lost,
while the remaining data blocks are unaffected. The index data
portion of the file can be reconstructed from the block data if
damaged, or if it is practically difficult to construct the indices
during recording. The index data permits rapid random access to
individual data blocks during viewing or processing, regardless
of the length of the overall file. Sampling frequencies are chan-
nel specific, making the MEF format suitable for any time-series
data, including scalp EEG, polysomnography, electrocardiography,
and analytic transforms of recorded data, in addition to intracra-
nial EEG. Other data types are possible as well as long as they can
be stored as 24-bit or smaller integer time series. Additional data
size reduction can be achieved as well in hybrid array recordings
by downsampling the macroelectrode signals. The MEF format is
equally applicable to human and animal recordings, and header
fields have been designed to accommodate either type of subject.
The ability to encrypt patient information is fully compliant with
HIPPA standards, and thus facilitates data sharing by removing
the burden of data deidentification otherwise required. Large-
scale data also presents challenges for data analysis. The MEF
data format divides channels into separate files composed of inde-
pendent blocks to facilitate parallel processing. The index data
section at the end of each file facilitates rapid random access to
any point in the file based on either time (uUTC time), or sample
number.

The format specification, C source code, Java classes, and Mat-
lab functions to generate and read MEF files have been made freely
available under the GNU open-source software license in the hope
that this will facilitate widespread use of this file format (http://
mayoresearch.mayo.edu/mayo/research/msel/). In addition, Neu-
ralynx Inc recording equipment will now be capable of saving
recordings directly to MEF format (http://www.neuralynx.com).

5. Conclusions

Systems electrophysiology can require recording from a large
number of electrodes and over a wide dynamic range. In this
paper we described a human electrophysiology platform capa-
ble of recording from 320 electrodes (scalable to 1024 channels)
and with a per channel sampling rate of 32 kHz. The practical
challenges of managing the massive data volumes generated with
high spatiotemporal electrophysiology are significant, but the data
compression, information encryption, 32-bit CRC, and block index
structure incorporated in MEF data files are important tools for
addressing these challenges. Range-encoded difference compres-
sion reduced the size of recorded data files to less than 20% of the
18 bits per sample encoded at a one second block size, while increas-
ing the speed at which recorded data can be accessed. 128-bit
AES encryption meets the patient information privacy restrictions
imposed on clinical data by HIPAA regulations. The 32-bit cycli-
cally redundant checksum detects any data corruption that may
occur, and MEF’s block-wise approach to compression limits the
MEF index table provides ready access to any arbitrary point in the
recorded data, specified by either the time of the recorded seg-
ment or the sequential index of the recorded samples. Software
libraries to read, write, and process MEF data are freely available.

http://mayoresearch.mayo.edu/mayo/research/msel/
http://www.neuralynx.com/
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he system described here is scalable and can be tailored to the
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rade off dictated by data volume and management.
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