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Abstract  Network big data refer to the massive data generated by interaction and fusion of the
ternary human-machine-thing universe in the Cyberspace and available on the Internet. The
increase of their scale and complexity exceeds that of the capacity of hardware characterized by the
Moore law, which brings grand challenges to the architecture and the processing and computing
capacity of the contemporary IT systems, meanwhile presents unprecedented opportunities on
deeply mining and taking full advantage of the big value of network big data. Therefore, it is
pressing to investigate the disciplinary issues and discover the common laws of network big data,
and further study the fundamental theory and basic approach to qualitatively or quantitatively
dealing with network big data. This paper analyzes the challenges caused by the complexity,
uncertainty and emergence of network big data, and summarizes major issues and research status of
the awareness, representation, storage, management, mining, and social computing of network
big data, as well as network data platforms and applications. It also looks ahead to the development
trends of big data science, new modes and paradigm of data computing, new IT infrastructures,

and data security and privacy, etc.
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Background

Traditionally, massive data are mostly produced in
scientific fields such as astronomy, meteorology, genomics
physics, biology, and environmental research. Due to the
rapid development of IT technology and the consequent
decrease of the cost on collecting and storing data, massive data
have been being generated from almost every industry and
sector as well as governmental department, including retail,
finance, banking, security, audit, electric power, health-
care, to name a few. Network big data are the massive data
generated by interaction and fusion of the ternary human-
machine-thing universe in the Cyberspace, which includes
tons of user generated contents, log files, deep web data,
etc. Network big data have attracted extensive interests from
both academia and industry due to the potential big social,
commercial, and scientific value.

Evidently, network big data have been not only changing
the way in which people live and work, but also reforming
the mode that enterprises run. The famous McKinsey Global
Institute regards big data as ' the next frontier for innovation,
competition, and productivity'. Nature and Science have pub-
lished special issues in 2008 and 2011, respectively, to dis-
cuss the unprecedented opportunities that big data bring to
us. Moreover, the US government announced in 2012 a "Big

Data Research and Development Initiative" aiming to greatly

improve the tools and techniques needed to access, organize,
and glean discoveries from huge volumes of big data. Because
of this background, an academic symposium of the Xiangshan
Science Conferences was organized last year in Beijing to dis-
cuss the issues of the challenges, theoretical foundation, and
ecosystem of network big data. Later on, the China Computer
Federation (CCF) founded the CCF Task Force on Big Data
(CCF TFBD) to investigate and study the core scientific and
technological issues of network big data.

Although network big data bring us unparalleled oppor-
tunities, they, however, also pose many grand challenges to
us. Particularly, due to the features of big data such as sea-
scale volume and heterogeneous formats, the existing theory
and technology of data processing cannot efficiently and effec-
tively cope with network big data. As a consequence, it calls
for a specialized discipline to explore the common laws of
network big data, study fundamental theory and essential
approaches to qualitatively or quantitatively handling network
big data, and eventually build solid foundation for developing
new theory, techniques, and methods for big data processing.
This paper summarizes the research issues and present status
of network big data and looks ahead to the development

trends.



