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Systemic Risk in Financial Systems

Larry Eisenberg ® Thomas H. Noe
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larry@riskengineer.com ® tnoe@mailhost.tcs.tulane.edu

We consider default by firms that are part of a single clearing mechanism. The obliga-
tions of all firms within the system are determined simultaneously in a fashion con-
sistent with the priority of debt claims and the limited liability of equity. We first show, via
a fixed-point argument, that there always exists a “clearing payment vector” that clears the
obligations of the members of the clearing system; under mild regularity conditions, this
clearing vector is unique. Next, we develop an algorithm that both clears the financial system
in a computationally efficient fashion and provides information on the systemic risk faced
by the individual system firms. Finally, we produce qualitative comparative statics for finan-
cial systems. These comparative statics imply that, in contrast to single-firm results, even
unsystematic, nondissipative shocks to the system will lower the total value of the system

and may lower the value of the equity of some of the individual system firms.

(Credit Risk; Default; Clearing Systems)

1. Introduction
One of the most pervasive aspects of the contem-
porary financial environment is the rich network of
interconnections among firms. Although financial lia-
bilities owed by one firm to another are usually mod-
eled as unidirectional obligations dependent only on
the financial health of the issuing firm, in reality, the
liability structure of corporate obligations is invariably
much more intricate. The value of most firms is depen-
dent on the payoffs they receive from their claims on
other firms. The value of these claims depends, in
turn, on the financial health of yet other firms in the
system. Moreover, linkages between firms can be cycli-
cal. A default by Firm A on its obligations to Firm B
may lead B to default on its obligations to C. A default
by C may, in turn, have a feedback effect on A. This
example illustrates a general feature of financial sys-
tem architectures, which we term cyclical interdepen-
dence. In this paper, we consider the problem of finding
a clearing mechanism in cases in which this sort of
cyclical interdependence is present.

All markets have some kind of clearing mecha-
nism. Perhaps clearing mechanisms of interbank pay-
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ments and for listed exchanges have received the most
attention. In the United States, for example, CHIPS
and Fedwire are the main banking clearing mech-
anisms; in Germany, the Abrechnung and the EAF
(Elektronische Ai rechnung mit Filetransfer) performs
this function. Regarding clearing mechanisms, one of
the attractions of trading on a listed options exchange,
the CBOE, for example, is that the Options Clear-
ing Corporation is the counterparty to every trade.
Hence, credit considerations do not prohibit lower-
credit traders from participating in these markets.
These payment systems are forced to confront large
defaults on a regular basis. Examples of such defaults
include the failure of I.D. Herstatt in 1974 and the Bank
of New York overnight shortfall of $22.6 billion in
1985. Systemwide meltdowns also occur. For example,
consider the collapse of the Tokyo real estate market,
the bankruptcy and public bailout of American S&Ls
to the cost of about $500 billion, the Venezuelan bank
crisis of 1994, and the Long Term Capital bailout
associated with the Russia’s sovereign debt default.
One of the most interesting failures of a tightly inter-
connected clearing system was the 1982 collapse of
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the al-Manakh stock market in Kuwait. The clearing
system, consisting of approximately 29,000 postdated
checks written by traders, collapsed after a 45% drop
in market values. The nominal gross liabilities of the
participants in the market to each other at the time of
the collapse was more than four times Kuwait’s gross
domestic product (Elimam et al. 1997).

Surprisingly, despite the obvious importance of the
“architecture of financial linkages” for determining
the return-generating process for financial assets, little
has been written on cyclical financial interconnections.
The effects of bilateral clearing of offsetting nominal
obligations has been thoroughly analyzed in Duffie
and Huang (1996). Rochet and Tirole (1996) analyzed
the incentive and monitoring impact of an interbank
loan. From a more empirical perspective, Angelini
et al. (1996) develop an empirical model of intercor-
porate defaults. In this model, the probability that a
default by one firm triggers another firm’s default is
exogenously specified without modeling intercorpo-
rate cash flows. Eliam et al. (1997) report the actual
procedure used to clear intercorporate debts after the
Kuwaiti shock market crash. However, to our knowl-
edge, this paper is the first to analyze, in a general
fashion, the properties of intercorporate cash flows in
financial systems featuring cyclical interdependence
and endogenously determined clearing vectors.

This lack of attention to cyclical interdependence
is even more surprising given the extensive litera-
ture modeling default in a simple unidirectional and
bilateral context. In fact, the whole literature on term
structure of interest rates ignores the considerations
mentioned above. While modeling the valuation of a
firm’s debt as independent from that of other firms
simplifies debt and equity models, this assumption
becomes questionable in portfolio management, cor-
porate bond trading, and the analysis of counterparty
credit risk. A desideratum for addressing these issues
is the development of a simple, tractable model for
computing clearing vectors for interlinked financial
systems. The aim of this paper is to provide such a
model.

We develop a fairly general model of a clearing
system. The model satisfies the standard conditions
imposed by bankruptcy law, that is, clearing vectors—
which represent the vector of payments from nodes
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in the financial system to other nodes—satisfy the
conditions of proportional repayments of liabilities in
default, limited liability of equity, and absolute pri-
ority of debt over equity. We shall show, via a fixed-
point argument, that clearing vectors always exist.
Moreover, under mild regularity conditions, there is
a unique clearing vector. This clearing vector can be
computed through a “fictitious sequential default”
algorithm. Moreover, the algorithm corresponds to a
process of dynamic adjustment in which the set of
defaulting firms at the start of each round is fixed by
the adjustments of the system in the previous round.
In each new round, an attempt is made to clear the
system assuming that only nodes that defaulted in the
last round default. If, in fact, no new defaults occur,
the algorithm terminates. Otherwise, the new wave of
defaults is recorded and the process is iterated again.
This algorithm, as well as quickly yielding the clearing
vector, produces a natural measure of systemic risk—
the exposure of a given node in the system to defaults
by other firms. This measure of systemic risk is based
on how many “waves” of defaults are required to
induce a given firm in the system to fail.

After analyzing the clearing vector, we perform
comparative statics on the clearing payment vector,
determining the nature of its dependence on the vector
of operating cash flows as well as on the architecture of
financial liabilities linking the various members of the
system. More specifically, we show that the clearing
payment vector is a multidimensional concave func-
tion of operating cash flows and the level of nominal
payments, and that the value of equity is not generally
convex in operating cash flows. These results imply
that the total value of firms in the system is concave
in operating cash flows. Standard results on stochastic
dominance imply that the expectation of concave func-
tion or a random variable is lowered by increases in
risk. Thus, our results imply, assuming standard risk-
neutral valuation, that increased volatility, by lower-
ing the value of interfirm payments, will lower the
total value (debt plus equity) of nodes in the system.
This result obtains even though there are no costs to
insolvency in our model in the sense that total equity
value is conserved. For this reason, our results sug-
gest that using changes in total asset values to measure
the effect of an economic shock on a group of tightly
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interconnected companies (e.g., Japanese banks) can
be highly misleading.

The paper is organized as follows. In §2, we present
the model and develop the basic machinery, including
existence-uniqueness results. In §3, we present the two
characterizations of the clearing vectors and exam-
ine their consequences. In §4, we derive comparative
statics of the clearing system. Section 5 concludes the
paper and considers some extensions.

2. Framework and Basic Results

2.1. Preliminaries

The subsequent analysis utilizes a number of stan-
dard definitions from matrix algebra and basic lat-
tice theory. The definitions are standard. To reduce
confusion and make referencing easier, we collect
these definitions together in this section. Let %" rep-
resent n-dimensional Euclidean vector space. Let ¥/ =
{1,2,...,n}. For any two vectors, x, y € R", define the
lattice operations

XAy = (min[x;, y,], minfx,, y,]... min[x,, y,]),

x\/y = (max[xl’ 1/1]/ max[x2’ yz] “en max[xnl yrz])r

xt := (max[x;,0], max[x,,0]...max[x,,0]).

Let 1 represent an n-dimensional vector, all of whose
components equal 1,i.e.,1=(1,...,1). Similarly, let 0
represent an n-dimensional vector, all of whose com-
ponents equal 0. Let || - || denote the £!-norm on R".
That is, for each x € R" let

n
llxll := > 1l
i=1

Let ||| - ||| be the operator matrix Norm associated with
Il - {I; that is, for each n x n matrix, define

[IM][| = Sup|Mx].

lxll=1

An important definition for our future analysis is of
a nonexpansive map. A map T: %" — R" is (£')-
nonexpansive if, Vx € R",

ITG) =TI = lx =yl

238

Whenever an ordering of elements of )" is specified in
the sequel, the ordering refers to the pointwise order-
ing induced by the lattice operations, i.e.,

¥x<y&=x; <y, forallie.

- 2.2. Economic Framework

Consider an economy populated by n nodes. Each of
these nodes is to be thought of as a distinct economic
entity, or financial node, participating in the clearing
network. Each such entity may have nominal liabilities
to other entities in the system. These nominal liabilities
represent the promised payments due to other nodes
in the system. We represent this structure of liabili-
ties with the n x n nominal liabilities matrix L, where L;
represents the nominal liability of node i to node j.
As the notion of nominal claims seems to imply, we
assume that all nominal claims are nonnegative and
that no node has a nominal claim against itself. To
reflect this economic interpretation, we specify that the
nominal liabilities matrix is nonnegative and that all
of the diagonal elements of the matrix equal 0; that is,
we assume that Vi, je &, Lij >0 and that Vi, L;; =0. Let
e; > 0 be the exogenous operating cash flow received by
node i. This operating cash flow is the cash infusion
to the node from sources outside the financial system.
A financial system is thus a pair (L, e) consisting of a
nominal obligations matrix L and an operating cash
flow vector e, satisfying the conditions given above.
Note that the condition that operating cash flow is
nonnegative is not really restrictive. It might appear
that operating cash flows could be negative because
of operating costs. However, operating costs are not
negative cash infusions; rather, operating costs are the
sum of all liabilities of the firm to outside factors of
production: workers, suppliers, and so forth. A firm
that has costs in excess of its revenues does not have a
negative cash balance; rather, it has positive operating
cash inflows and liabilities to workers and suppliers
that exceed those positive operating cash flows. Those
operating costs could be captured by appending to the
financial system a “sink node,” labeled, say, node 0.
We could assume that this sink node has no operating
cash flow of its own, i.e., g, = 0, nor obligations to other
nodes, i.e., Ly =0, Vj; the “operating cost” of node i,
in this framework, would be the liabilities of node i to
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the sink node 0, i.e., L;;. Because nothing in our setup
precludes a node with the characteristics of the sink
node, the assumption of nonnegative operating cash
flows is made without a loss of generality.

Let p; represent the total dollar payment by node i to
the other nodes in the system. Let p = (py, po, ... , Pu)
represent the vector of total payments made by the
nodes. Let p; represent total nominal obligation of i to
all other nodes, that is,

pi=2 Ly )

Let p = (p1, Poy ... , Pu) represent the associated vec-
tor, which we term the fotal obligation vector. This vec-
tor represents the payment level required for complete
satisfaction of all contractual liabilities by all nodes.
Let
Liogf p; >0
I, = {5 P @)
and let II represent the corresponding matrix, which
we term the relative liabilities matrix. This matrix cap-
tures the nominal liability of one node to another in
the system as a proportion of the debtor node’s total
liabilities. We assume that all debt claims have equal
priority. This equality of priority implies that the pay-
ment made by node i to node j is given by p;I1;;. This
implies that the total payments received by i are equal
to Y7, ITip;. Further, all payments are made to some

ij
node in the system, and, therefore,

otherwise

n
Vi, ZHU = 1,
j=1

or, in matrix notation,
11 =1,

an equality we will use later in the analysis.

The total cash flow to the owners of the equity of
node i equals the sum of the payments received by
other nodes plus the operating cash flow. This implies
that the total cash flow to node i equals

n
> Tp; +e.
j=1

MANAGEMENT ScIENCE/ Vol. 47, No. 2, February 2001

The value of the equity of node i is given by total cash
flows less payments to creditors. In other words, the
value of node i’s equity is

ZH,‘?P;' +e —p;.

j=1

Note also that, by using (1) and (2), the financial sys-
tem (L, e), where L is a nominal payments matrix and
e is a vector of operating incomes, can be equivalently
described by the corresponding triple (II, p, e), where
IT is a relative liabilities matrix, p is a payment vector,
and e is an operating cash flow vector. We will flesh
out this description of a financial system in the subse-
quent analysis.

Intuitively, a clearing payment vector for the finan-
cial system should represent a specification of the
payments made by each of the nodes in the financial
system that is consistent with the legal rules allocating
value among nodes and among holders of debt and
equity. Three criteria that must be satisfied are (a) lim-
ited liability, which requires that the total payments
made by a node must never exceed the cash flow avail-
able to the node; (b) the priority of debt claims, which
requires that stockholders in the node receive no value
until the node is able to completely pay off all of its
outstanding liabilities; and (c) proportionality, which
requires that if default occurs, all claimant nodes are
paid by the defaulting node in proportion to the size
of their nominal claim on firm assets. These desiderata
motivate the following definition.

DEFINITION 1. A clearing payment vector for the
financial system (I, p, ) is a vector p* € [0, p] that sat-
isfies the following conditions:

a. Limited Liability. Vi € W,

n
pi < ZHEP]* +e;.
=1

b. Absolute Priority. Vi € N, either obligations are
paid in full, that is, p; = p;, or all value is paid to cred-
itors, that is,

n

pi =Y 1ip; +e;. [

j=1
Under this definition, some firms will be forced to
pay out all of their value to creditors. This fact raises

239
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the question of why firms facing certain default pro-
vide their cash flows to the clearing system, know-
ing that all cash they contribute will be paid out to
other firms. We have in mind a situation in which
ex ante there was uncertainty as to the realized cash
flows of the firm. To raise funds for operations, firms
borrowed from other firms in the network. Ex ante,
firms expected to have positive equity balances in
some states of nature. Ex post, uncertainty is resolved,
and claims are cleared. It is this ex post clearing, cor-
responding to one of many realizations of the uncer-
tainty faced ex ante, that we model in this paper.
Ex post, some firms find themselves with zero equity
balances, paying out all value to other firms in the sys-
tem. Of course, ex post, firm owners would prefer not
to make these payments. However, this is irrelevant
because we assume a perfect claim-enforcement tech-
nology under which all ex ante commitments must be
honored. The assumptions we make regarding con-
tracting technology are entirely standard in the finance
literature and adopted in countless articles. However,
because bilateral clearing with a perfectly efficient con-
tracting technology is a trivial problem, the extant lit-
erature places little emphasis on these assumptions.
One central point of this paper is that the clearing
problem is not trivial in a multilateral network with
cyclical liabilities.

2.3. Existence of Clearing Payment Vectors

In the previous section we defined a clearing vector
using the standard rules of value division between
debtors and creditors: absolute priority, proportion-
ality, and limited liability. In a context in which one
firm is indebted to another firm, these rules always
clearly specify a unique division of value between the
debtor and creditor firms. Are these standard rules of
value division sufficient to produce a unique division
of value in a multifirm environment with cyclical obli-
gations? Will there exist cases in which no division of
value is consistent with these rules, or cases in which
more than one division of value is consistent? We will
show that a division of value consistent with standard
rules of value division always exists. Moreover, under
mild regularity conditions that ensure that all parties
of the system actually have some value to distribute,
only one pattern of payments is consistent with the

240

standard rules of value division. In other words, we
will show that clearing vectors exist and are unique.

To establish the existence of a clearing vector, we
will require a fixed-point characterization of clearing
vectors. To establish this fixed-point characterization,
first note that limited liability and absolute priority
imply that p* € [0, p] is a clearing payment vector if
and only if the following condition holds: Vi € ¥,

n
pi= min[ei +2_Wp], ﬁi]'

j=1
The first term in the minimum expression on the right-
hand side of the above expression represents “what
the node has,” the total inflows to i. The second
term in the minimum expression is “what the node
owes,” the total obligations of node i other nodes in
the system. A clearing vector is a vector in which
every node pays the minimum of what it has and
what it owes. From the above discussion, we see that
the clearing vector is a fixed point, p*, of the map,
®(-; 11, p,e): [0, 7] — [0, 7], defined by

O(p; 11,7, e) = (T p+e) Ap.

An economic interpretation of ® is that ®(p) repre-
sents the total funds that will be applied to satisfy
debt obligations, assuming that nodes receive inflows
specified by p from their debt claims on other nodes.
We now show, through a fixed-point argument using
the ® map, that every financial system has a clearing
vector.

THEOREM 1. Corresponding to every financial system
(H/ ﬁ ’ e)/

a. There exists a greatest and least clearing payment vec-
tor, pt and p~.

b. Under all clearing vectors, the value of the equity at
each node of the financial system is the same, that is, if p’
and p" are any two clearing vectors,

(') +e—p) =" (p") +e—p)*

Proor. To prove Theorem 1, we need to first char-
acterize some basic properties of the ® map. We note
that ® is positive, increasing, concave, and nonexpan-
sive. The assertions of positivity, monotonicity, and
concavity follow because ® is the composition of the
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positive, increasing, affine map g — 17+ ¢, and the
positive, increasing, concave map g — g A p. To show
that the map is nonexpansive, first note that, for any
three vectors x, y, and z, |[x Az—y Az| < ||lx —y|. This
result implies that |®(p) — ®(@)|| = |(I"p+e) Ap —
(OTp' +e) Ap|l < |TITp —TITp'||. Next note that the col-
umn sums of II7 all equal 1. This implies, from basic
matrix algebra, that |||II7|||| = 1. Thus, |[ITTp —IITp’|| <
llp— 7|, establishing nonexpansiveness.

Let FIX(®) represent the set of fixed points of ®.
Because @ is increasing, ®(0) > 0 and ®(p) < p, the
Tarski fixed-point theorem (see, e.g., Zeidler 1986,
Theorem 11.E) implies that FIX(®) is nonempty and,
moreover, possesses a greatest and least element. Thus
(a) is established.

To prove (b), let p’ be any clearing vector. We will
show that the value of equity is the same under p’ and
p*. This is sufficient to establish (b). To show that the
value of equity is the same under p’ and p*, first note
that I17 is an increasing map, as is the map x — x*.
Thus, we must have, because p* > p/, that

(T (p*) +e—p)* = (' (p) +e—p)*.
Thus, if
(7 (p*) +e—p)t # (I (p) +e—p)",
then we would have that
(MM (p*) +e—p)* = (I (p) +e—p)*. (©)

Because p* and p~ are both clearing vectors, it also
must be the case that

[I'(p*)+e—p)* =M (p*) +e—p*, (4)
() +e—p)" =" (p)+e—p. ()
Expressions (3), (4), and (5) imply that
I (p*) +e—p 2T () +e—p. (6)
Now, note that I11 = 1. This implies that
1. (I (p*) —p*) =1 (I (p') - p') =0.
Thus,

1. (p*) +e—p") =1- (' () +e—p). (7

MANAGEMENT ScIENCE/ Vol. 47, No. 2, February 2001

However, (6) implies that
1" (p*) +e—p*) > 1- (" (p) +e~p).  (8)

The contradiction between expressions (6) and (7)
establishes (b). O

24. Uniqueness of Clearing Vectors
As we have seen, the existence of a clearing vector
follows from a simple fixed-point argument. Estab-
lishing uniqueness for a large range of financial sys-
tems requires more work. We need to rule out cases
where the same allocation of equity value can be
supported by numerous specifications of payments
between nodes. Cases exist in which clearing vectors
are not unique. See Appendix 2 for an example. In this
section we shall show that, to rule out such cases, we
need only impose conditions that ensure that all parts
of the system have some tangible economic value, in
the form of operating cash flow, to distribute. To make
these conditions precise, we require some definitions.
The first key definition is that of a “surplus set.”
DEFINITION 2. A set S C W is a surplus set if no node
in the set has any obligations to any node outside the
set and the set has positive operating cash flows, that
is, if ¥(i,j) e Sx S, II; =0 and } jcse; > 0. I
Intuitively, a surplus set is a closed reservior of
value in the financial system. Because the financial
system is conservative, neither creating nor destroy-
ing value, the value in a surplus set must be allocated
somewhere. Because the surplus set is closed, value
must flow to some node in the surplus set itself. This
observation is formalized in the next lemma.

LemmMa 1. If p* is a clearing vector, then it is not possi-
ble for all nodes in a surplus set to have zero equity value.

PROOF. Suppose S is a surplus set. Let P;" represent
the sum of all of the payments received by anode i € S
from nodes in 5°. By the definition of a surplus set,
nodes in S make no payments to nodes in 5. Thus, if
all nodes in S have zero equity value, it must be the
case that

pi=)_Ilp+e+Pf, Vies. )
jes
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Summing the equations specified in (9) over i € S thus
yields

dopi=2_ 2 Mipi+3 (Pt +e). (10)

ieS jes ieS ieS
Using the fact that S is a surplus set, we also have that

yul=1. (11)

ieS

Expressions (10) and (11) imply that

0=> (P} +e),
ieS
contradicting our assumption that }";.ge; >0. O

The second key to establishing uniqueness is a
“financial structure graph,” which describes in a qual-
itative fashion the links between the nodes in a finan-
cial system.

DerFINITION 3. The financial structure graph asso-
ciated with the financial structure (II,p,e) is the
directed graph whose vertices are the nodes of the
financial system /', and whose edges are defined by
i—je=1IL;>0. I

The direct liabilities of each node in the system
are to the nodes to which the agent has contractual
obligations. However, these direct links by no means
exhaust the set of all nodes that are affected by a
node’s default. Defaults cascade through the system.
The default of a single node reduces the inflows to its
creditors, perhaps triggering the default of one of these
creditors, and even, perhaps, defaults further down-
stream. How far downstream can the risk of a given
node in the system travel? An upper bound on propa-
gation is provided by the concept of the risk orbit of a
node in the system. The risk orbit of a node is the set of
all nodes that are connected to the given node through
some directed path, however circuitous, through the
system.

DEFINITION 4. For each node i € N, define the
risk orbit of node i, denoted by o(i), as follows:
o(i) = {j € N: there exists a directed path from i to j}.|

It would appear that, because they abstract from
the magnitude of exposures, concepts such as strong
connectedness and risk orbits are incapable of provid-
ing any useful characterization of clearing payment
vectors for the system. This is not correct. In fact, a

242

very simple property of risk orbits forms the basis for
our proof of the uniqueness of the clearing payment
vector.

LEMMA 2. Suppose that p* is a clearing vector for
(IL, p, e). Let o(7) be a risk orbit that satisfies 3 e, €; > 0.
Then, under p*, at least one node of i has positive equity
value, that is,

3j € o(i), such that p; < (I"p*+e);.

Proor. First note that o(7) is a surplus set. To see
this, note that if some node, say 7', in o(i) owed some-
thing to a node j € o(i), then, by appending to the
directed path from i to i’ the edge i’ — j, one could
construct a directed path from i to j, contradicting the
assumption that j is not in o(7). Lemma 1 shows that
every surplus set contains a node with positive equity
value. 0O

The previous lemmas form the basis for a demon-
stration of the uniqueness of a clearing payment vec-
tor under a mild additional restriction that we term
regularity.

DerFINITION 5. A financial system is regular if every
risk orbit, o(i), is a surplus set.

Note that, in our model, real economic value is
produced from operating income and this value is
conserved by the clearing system. Bankrupt nodes
have their value transferred to solvent creditor nodes.
Moreover, our clearing system is closed; no value
leaves the system. Regularity rules out cases where
part of the network lacks any economic value, in the
form of operating cash flows, to distribute. Thus, in
essence, regularity boils down to the existence of some
value somewhere in the system that can reach all
points in the system. A simple sufficient condition
for regularity is that all nodes have positive operat-
ing cash flows, another simple condition for regular-
ity is that all nodes in the financial structure graph are
strongly interconnected and some node has positive
equity value. The next theorem shows that regularity
is sufficient to ensure the existence of a unique clear-
ing vector.

THEOREM 2. If the financial system is regular, the great-
est and least clearing vectors are the same, ie., p™ =p~,
implying that the clearing vector is unique.

PRrOOF. See Appendix 1.
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3. Characterizing Clearing Vectors

3.1. Sequence of Defaults
In this section we show that the clearing vector can be
viewed as the product of a simulated or “fictitious”
default process. This process both permits the con-
struction of a simple algorithm for identifying clearing
vectors and produces a natural metric for measuring
a node’s systemic risk exposure. We call this simple
algorithm the fictitious default algorithm. The essence of
the algorithm is simple. First, determine each node’s
payout, assuming that all other nodes satisfy their
obligations. If, under the assumption that all nodes
pay fully, it is, in fact, the case that all obligations are
satisfied, then terminate the algorithm. If some nodes
default even when all other nodes pay, try to solve the
system again, assuming that only these “first-order”
defaults occur. If only first-order defaults occur under
the new clearing vector, then terminate the algorithm.
If second-order defaults occur, then try to clear again
assuming only second-order defaults occur, and so on.
It is clear that since there are only 7 nodes, this process
must terminate after n iterations. The point at which
a node defaults under the algorithm is a measure of
the node’s exposure to the systemic risks faced by the
clearing system.

We assume henceforth that the financial system has
a unique clearing vector. As shown by Theorem 2, reg-
ularity is a sufficient condition for the clearing vec-
tor to be unique. In this section, we characterize this
clearing vector. First we develop an algorithm of find-
ing the clearing vectors. Describing the algorithm in
detail and proving that it is effective requires that
we develop some new concepts. Let S be the set of
supersolutions of the fixed-point operator ®; that is,
S={pe[0,p]: ®(p) < p}. The supersolutions are the
set of proposed payment vectors under which pay-
ments received exceed payments required given the
rules of limited liability and absolute priority. Thus,
supersolutions are payment vectors under which some
node is paying other nodes more than its total inflow.
Note that, for any such supersolution, because total
equity value is positive, it must be the case that not all
nodes are paying more than their inflow, i.e,, it is not
possible that ®(p) < p. For each p € S, let the default
set under p, which we denote by D(p), be the set of
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nodes i, such that ®(p); < p;. By the earlier observa-
tion, D(p) cannot contain all nodes. Let A(p) represent
the n x n diagonal matrix defined as follows:

Ap), = 1 i=jandieD(p)
i = 0 otherwise '

A(p);; is a diagonal matrix whose values equal 1 along
the diagonal in those rows representing nodes not in
default under p, and equal to 0 otherwise. Thus, when
multiplied by other matrices or vectors, the A matrix
converts the entries corresponding to the nondefault-
ing node to 0. The complementary matrix I — A(p’)
converts entries corresponding to defaulting nodes
to 0. For fixed p' € S, define the map p — FE,(p) as
follows:

FE, (p) = A(p) (" (A(p)p+ (I - A(p)P)) +e) (1)
+ (I = AP))(P).

This map, FE, (p), simply returns, for all nodes not
defaulting under p/, the required payment p, and, for
all other nodes, returns the node’s value assuming
that nondefaulting nodes under p’ pay in full and
defaulting nodes under p’ pay p. By our earlier result,
Lemma 1, the default set is not a surplus set. Thus,
A(p)I1 has a row sum that is less than 1, and no row
sum exceeds 1; this, in turn, implies that PPP, has a
unique fixed point by standard input-output matrix
results (Karlin 1959, Theorem 8.3.2). Call this fixed
point f(p'). Note that only when p’ is a supersolution
can we be assured that f(p') is well defined. Next,
define inductively the following sequence of payment
vectors:

=5 P=fE. (FDS)
We call this sequence of vectors the fictitious default
sequence, and we call the process of producing these
vectors the fictitious default algorithm.

LemMmaA 3. The fictitious default algorithm stated in
(FDS) produces a well-defined sequence of vectors, p/. This
sequence decreases to the clearing vector in at most n iter-
ations of the algorithm.

Proor. First, we show by induction that the ficti-
tious default sequence is well defined and decreasing.
To show this, we must show that for all p/,p/ is a
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supersolution to @ for all j and that the sequence (p/)
decreases. We establish this result by induction. When
j =0, these assertions are obvious. Next, suppose the
assertions are true for p*. Note that the definition of
the A matrix implies that A(p*)p* + (I — A(p*))p = p*.
Because p* is a supersolution to ®, it must be the
case that for all defaulting nodes i, (Ilp* + e); < p¥.
This implies, combined with the definition of A, that
®(p*) = FE,(p"). By the induction hypothesis, p* is a
supersolution to ®. Therefore, p* is a supersolution to
FF,. This fact implies that p**1, the fixed point of FF,,
is less than or equal to p¥. Because p**! < p*, the set
of nodes at which default occurs must be no smaller
under p¥ than under p**1. Now, if the set of nodes is the
same, then ®(p**!) = FF . (p*), which implies, because
by definition p*** is a fixed point of FF(p¥), that p*+!
is a fixed point of @, and thus trivially a supersolution.
If the set of defaulting nodes is larger under p**!, then
some nodes that paid their obligations in full under
p* default under p¥*!, and the rest of the nodes either
default under both payment vectors or under neither.
Thus, for those nodes such that default occurs under
pF*1 but not p¥, ¢(p**1); < p*. For all other nodes, the
fixed-point construction implies that ¢(p"*1!);, = pi*.
Thus, we have that p/ is a supersolution to ® and that
(p') is a weakly decreasing sequence.

As shown in the previous paragraph, if the set of
defaulting nodes is the same under both p/*! and p/,
then (i) p/ is a fixed point of ®, and (ii) the sequence
will remain constant after p/*1. If p/ fails to be a fixed
point of the map ®, then a node that did not default
under p/ defaults under p/*1. In this case, the number
of defaulting nodes, specified in the next A matrix, will
increase in the next iteration. Because there are only n
nodes and at most n —1 can default in any supersolu-
tion, it must be the case that the payment vector pro-
duced by the algorithm ceases to change after at most
n iterations. Because the sequence is constant only at
fixed points, the clearing vector is attained in at most n
iterations. [

In addition to being computationally efficient, the
algorithm has an economic interpretation: The step in
the algorithm at which a node is added to the default-
ing set can be used as a measure of the node’s financial
health. Nodes that default under the first trial solu-
tion are fundamentally insolvent because they cannot
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survive even with no systemic risk exposure. Nodes
that fail in the next wave are quite fragile in that they
fail whenever fundamentally insolvent nodes fail. The
third-order failures are triggered by the failure of frag-
ile, but not fundamentally unsound nodes, and so on.
Thus, nodes are partitioned by the algorithm into sol-
vent nodes and 1, 2..., n— 1th order failures.

3.2. Programming Characterization

Next we will show that clearing payment vectors
can be identified by solving almost any programming
problem that places weight on maximizing payments
by all nodes in the system subject to the limited lia-
bility condition. Formally stated, we associate with
each financial system (II,7,e), and each function
f:10,p] = N, the programming problem

P, p e f)  Maxf(p)
s.t. p<ITp+e.

The link between this programming problem and
clearing payment vectors for the financial system is
provided by the following lemma.

LemMA 4. If f is strictly increasing, then any solution
toP(I1, p, e, f) is a clearing vector for the financial system.

Proor. If p* solves P(I1, p, e, f), the fact that p* is a
feasible solution to P(II, 7, e, f) ensures that p* satis-
fies the limited liability condition for a clearing pay-
ment vector. If absolute priority were not satisfied, say
at node i, then it would be the case that p} < p and

(I7p* + e —p*),; > 0.

Consider the vector p,, which is equal to p* in all com-
ponents except i, and which, for i, is given by p} +¢,
where € is chosen sufficiently small to ensure that lim-
ited liability remains satisfied. Because

(ITpe+e—pe);—(T'p* +e—p*); = €ll; 20,

p. is feasible. Because p, is at least equal to p* in all its
components and greater than p* in one of its compo-
nents, and because f is strictly increasing, it must be
the case that f(p*) < f(p.), contradicting the supposi-
tion that p* is a solution to P(Il, p, e, f). O

Because clearing vectors are determined entirely by
the limited liability and absolute priority conditions, it
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follows that these two conditions always produce pay-
off vectors that maximize the total extraction of pay-
ments from the nodes in the financial system. Because
the clearing vector is unique in any regular financial
system, the result also implies that in regular finan-
cial systems, all decision makers who prefer more to
less will agree that the clearing vector maximizes their
objectives. Thus, for example, whether one attempts to
maximize cents on the dollar paid or total payments,
or payments weighted by a biased weighting scheme
that favors some nodes over others, the end result
will be the same—the selection of the clearing vector.
The above result shows also that, for a regular finan-
cial system, solving the programming problem given
by P(II, p, e, f) for a suitably chosen function f, say
a linear function with positive weighting constants,
is a way of computing the clearing vector. In fact,
this is exactly the approach the monetary authorities
in Kuwait took to clearing the financial net after the
crash of the al-Manakh market. Given the n — 1-step
convergence of the fictitious default algorithm dis-
cussed above, however, this programming approach
may not be an efficient way of computing clearing vec-
tors, given that only one variable will be introduced
into the basic solution on each pivot. Algorithms that
exploit the economics of the problem, such as the ficti-
tious default algorithm developed above, allow for the
simultaneous introduction of many defaulting nodes
in a single step.

4. The Comparative Statics of the
Clearing System

The first question we will address is how this clearing
payment vector changes with changes in the exoge-
nous parameters of the model. We first consider the
relationship between this clearing payment vector and
the operating cash flows received by the system e,
while holding the nominal liability matrix L (or equiv-
alently II and p) constant. The basic characterization
of this relationship is provided below.

LEMMA 5. The clearing payment vector is a con-
cave, increasing function of operating cash flow vec-
tor and the level of nominal liabilities. In other words,

MANAGEMENT SCIENCE/ Vol. 47, No. 2, February 2001

the function e — FIX(®(-;II,p,e)), and the func-
tion p — FIX(®(-; 11, p, e)) are concave, increasing, and
nonexpansive.

Proor. For the purposes of this proof, define
the function F: [0,p] x %", :— [0,p] by F(p,e) =
®(p, e;I1, p). The clearing payment vector is given
by the function f: 9%}, — [0,p], defined by f(e) =
FIX(F(-, €)). A theorem from Milgrom and Roberts
(1994) shows that the fact that F is increasing in e
(established in the proof of Theorem 1) implies that f
is increasing. To see that f is concave and nonexpan-
sive, define a sequence of functions, {f,(e)}>,, induc-
tively as follows:

f"(e) = P(fn—l(e)/ e)/

For each fixed e € 0, f,(e) is just the nth iteration
of the map p — ®(p; II, p, e) function starting at the
initial payment vector 0. Thus, standard results on the
convergence of iterates of monotone increasing oper-
ators show that f,(e) 1+ f(e), for all e. Using the fact
that F is nondecreasing, jointly concave in p and e,
and nonexpansive, induction shows that, for all 7, f,
is concave and nonexpansive. Thus, f is the point-
wise limit of nonexpansive concave functions, and
thus concave and nonexpansive. The above argument
establishes the claim of the lemma for the function
e — FIX(®(-; II, p, €)). The proof of the claim for p —
FIX(®(-; IT, p, €)) and IT — FIX(®(-; I1, p, e)) is identi-
cal and thus will be omitted. [

Note that in the standard single-period/single-firm
financial model, the payment to debtholders equals
min[p, e], where e is the firm’s operating earnings
and p is the level of the firm’s nominal liabilities.
Thus, the payment received by debtholders is a con-
cave, increasing, nonexpansive function of the firm’s
operating cash flow and the level of nominal lia-
bilities. Lemma 5 shows that these qualitative fea-
tures of the debt payments in single-firm settings are
inherited by the debt payment vectors of multinode
clearing systems. This result has a number of direct
implications. For example, suppose we allowed for
stochastic operating cash flows. In this case, concav-
ity of the payment stream in operating cash flows
implies that increases in the riskiness of operating cash

fole) =0.
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flows, in the sense of second-order stochastic domi-
nance (Huang and Litzenberger 1988, Chap. 2), would
reduce the expected payments on each debt claim. In
other words, for all nodes i, E[p;] would fall with an
increase in the risk of the operating cash flow vector,
é. If we, in addition, imposed the standard assump-
tions for contingent claim pricing, e.g., that the finan-
cial markets are statically or dynamically complete,
then the initial value of each node of the financial sys-
tem would be given by its discounted expected value
under the market pricing or “risk-neutral” probability
measure (e.g., Duffie 1988, Chap. 22). Thus, our con-
cavity result would imply, in this setting, that increases
in risk under the pricing measure would lower the
value of each traded debt claim.

The results for equity valuation are more interesting.
The application of option pricing in the single-firm
setting, as often taught in first-year finance courses,
shows that equity may be priced as a call option on
the value of the firm with the strike and maturity date
equal, respectively, to the face value of 0-coupon debt
and its maturity date. For the single firm, an increase
in riskiness as represented by the volatility of the value
of the firm (debt plus equity) not only decreases the
value of debt, but also increases the value of equity.
However, such risk shifts will not lead unambiguously
to increased equity values for the nodes in a multi-
firm system. In a multifirm system, all debt claims are
owned by stockholders at some nodes of the system.
This implies that increases in risk across the system
have two effects. First, they raise the value of equity
by lowering the value of the debt payments made to
other nodes. Second, the increased risk also lowers the
value of payments from other nodes. Thus, the effect of
risk increases on individual node equity is ambiguous.
Because the total equity value of the system equals
total operating cash flows, an increase in the volatil-
ity holding the mean constant has no effect on over-
all equity value. However, the lowered value of debt
tends to reduce the value of the equity of those firms
that are net creditors, and increase the value of the
equity of net debtors.

Next, note that all of our results can also be inter-
preted in terms of node value. To understand this,
note that the terminal-date equity in a financial sys-
tem is II"p* +e — p*, and that the debt is p*(e), where
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p* is the clearing vector for the financial system. Thus,
the total terminal value of any node in the system is
the value of debt plus the value of equity, or II"p* +e.
Total value of all nodes in the economy is thus just
1-(II"p*+€) =1 (p*+e), the sum of the value of equity
and the value of all payments on liabilities under the
equilibrium clearing vector.

Using this fact we can obtain another consequence
of Lemma 5 that relates to the effect of cash flow
volatility on the aggregate value of nodes in the finan-
cial system. Since, in an arbitrage-free economy, the
value of a node is just the discounted expectation of
its terminal value under the market-pricing measure,
and because the function mapping cash flows to node
value, e — IITp*(e) +e, is concave, increases in volatil-
ity, under the market-pricing measure, adversely affect
firm value.

COROLLARY. Increases in the volatility (under the
market-pricing measure) of operating cash flows lowers the
initial value of all nodes in the system.

Thus, node value (debt plus equity) is reduced
by economic volatility, even though, in our analy-
sis, there are no dissipative consequences of financial
distress even when markets are perfect and friction-
less. Volatility reduces the size of payments between
nodes, and this reduces the market value of nodes.
Because, clearly, in the frictionless market setup spec-
ified above, volatility has no adverse overall welfare
consequences, this result should be interpreted as a
caution against interpreting the reduction in corporate
value caused by risk as reflecting either market imper-
fections or irrational asset pricing.

Next, we show that, in some sense, convex combi-
nations of financial systems can never have default
or payment rates inferior to the worse of the two or
superior to the better of the two. To permit a precise
formulation of this idea, let p*(I1, p, ) be the clearing
payment vector associated with an arbitrary financial
system (II, p, e); that is, p*(II, p, e) = FIX[®(-; p, e)].
A A-convex combination of the financial systems
(IT',p',¢) and (II",p",€") is the financial system
Iy, ), e)), defined by

(I, pase)) = AL, p', ) + (L= NI, p7, €"),
relo, 1.
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LEMMA 6. Suppose  that the financial  system
(I1), pr,ey)) is a A-convex combination of the financial
systems (I', p’, €') and (I1", p", €"), then the equilibrium
clearing payment vectors of the financial systems, p*, sat-

isfy the following inequalities:
p (U, ', ¢) A p™ (17, p7, ") < p*(ITy, Py, €))
S p*(l_.[l, p—l, el) vp*(Hll, p—/l, e//).
Proor. Note that, for all i € N, the function A —

D(p; I, Py, e,); is linear, and therefore monotone.
Thus we have that

Op;IT, 7, ¢) A D(p; 1", 7, ") < D(p; 1L, iy, €,)
<o I, p, e)vo(p; 11", 7', ).
Let
H (p)=®@p; 1,7, e)AO(p; IT", ', €");
H'(p) = (p; I, ', &) v (p; I1", ', €).

Note that H~ and H* are monotone increasing maps
defined on [0, p] with fixed points in this order inter-
val. If p* is a fixed point of H* and p~ is a fixed point
of H-, then the above inequality implies that

p-<p*(Ily,e) <p".

Because p*(IT', p', e') v p*(I”, p”, €”) is a supersolution
to Ht, i.e,

pr=p I, p, &) vpr @’ p, e,
similarly, because p*(IT', ¢, ') Ap*(Il”, p”, €”) is a sub-
solution to H—,

przp Al ) Apt (Il 7, e).
The inequalities follow. [

Lemma 6 is a fairly weak result. However, a stronger
characterization, such as a concavity result for finan-
cial systems (e.g., a result showing that convex com-
binations of systems yield higher payment rates than
convex combinations of the payment vector of the
two systems being combined), cannot be obtained. In
fact, it is easy to construct counterexamples to this
stronger characterization.! The failure of concavity
occurs because the map (I, p) — ®(p; 11, p, e) is not
concave, although it is concave in each of the variables,
IT and p, separately.

! A numerical counterexample is available on request.
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5. Possible Extensions and

Concluding Remarks

In this paper, we provide conditions for the existence
and uniqueness of a clearing vector for a complex
financial system, analyze the properties of the clearing
vector, and provide comparative statics describing the
relationship between the clearing vector and under-
lying parameters of the financial system. This work
represents a contribution to our understanding of the
modeling of complex financial systems featuring cycli-
cal obligations between the parties. However, it is only
a first step in the development of a research program
in this area. In fact, one of the virtues of our analysis
is that it can be extended in many directions. Exten-
sions fall into three broad categories: (i) utilizing the
current model for valuation and risk analysis, (ii) deal-
ing with more complex legal/institutional structures,
and (iii) incorporating dynamics.

The simplest extension of the present analysis is
to use the formulae developed in the paper to value
financial claims and assess default probabilities for
financial systems. Given a structure of liabilities, the
value of the debt and equity claims for a fixed level
of operating cash flows at the terminal date is deter-
mined by our model. If we assume operating cash
flows follow a standard stochastic process between the
initial date and the clearing date, then this stochastic
process, combined with the terminal boundary condi-
tions imposed by our model and standard risk-neutral
valuation technology, can generate prices for the debt
and equity of the nodes in the system (e.g., Duffie
1988). In addition, probabilities of default and default
correlation can be computed easily. In addition, the
distribution of cash flows to each of the nodes also
can be computed and inverted to yield value-at-risk
estimates.

Extending our results to allow for more complex
legal and institutional structures is almost as trans-
parent. For example, the nodes in the system could
be allowed to hold intercorporate equity claims as
well as intercorporate debt claims. In this case, inflows
would be augmented by equity as well as debt inflows.
Because equity claims are linear, this extension would
not complicate our analysis significantly. Multiple
priority classes could be accommodated by our frame-
work. To accommodate multiple priority classes, we
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would utilize a sequential clearing procedure in which
first a clearing vector for senior claims is found, then
the residual value is treated as the operating cash
flows of the system when clearing of the next highest
priority claim, and so on. Another important exten-
sion would be to allow for violations of absolute pri-
ority, a significant factor in corporate bankruptcies,
although not in some of the financial system clearing
systems addressed earlier. The key assumptions that
drive most of our results are that creditor claims are
continuous and increasing in the value of the node. If
violations of absolute priority are the product of effi-
cient multilateral bargaining, as assumed in much of
the literature (e.g., Brown 1989), then creditor claims
are likely to have this property. In systems where there
are substantial fixed costs of financial distress, conti-
nuity is lost and, for this reason, one would expect
to obtain more opaque results: for example, the lack
of a unique clearing vector even when mild regular-
ity conditions, such as those used in this paper, are
imposed.

The most difficult direction of extension would be
to allow for more than one clearing date, and thus
incorporate true dynamics. In principle the extension
is straightforward and would proceed as follows. First,
allow for intercorporate equity and assume that nodes
that default at a given date become wholly owned
by their creditors from that date forward. Next, allow
all nodes to borrow from a node outside the sys-
tem that itself is not subject to default risk. The out-
side node, or “central bank,” would provide funds
at a market-clearing rate. Thus, nodes would only
default when, at the clearing vector, the value of future
inflows is less than the value of liabilities. Using this
motif and backward induction, one could recursively
solve for clearing vectors. Uncertainty could be intro-
duced into this framework by recursively comput-
ing the expected value of future inflows to deter-
mine the current economic value of the node and
thus solve the default problem for successively ear-
lier periods. Of course, this sort of extension of our
analysis, through the “curse of dynamic program-
ming,” would greatly increase the complexity of the
analysis.
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Appendix 1

PRrOOF OF THEOREM 2. By Theorem 1, a greatest and least clear-
ing vector exists. By definition, the greatest clearing vector, p*, is
at least weakly greater than the smallest clearing vector, p~, i.e.,

pr=p. (ALD)

Suppose to obtain a contradiction that the greatest and least clear-
ing vectors are unequal, i.e.,

PP (A12)
Let Ef(E7) represent the value of equity under clearing vector
p* (p~). Note that, by Theorem 1, the value of equity at all nodes
is the same under all clearing vectors, i.e.,

(A1.3)

A straightforward consequence of (A1.3) is that the set of zero
equity value nodes under p* equals the set of positive equity value
nodes under p~. Thus, without ambiguity we can apply the terms
“zero equity value” and “positive equity value” to nodes without
specifying the clearing vector.

By absolute priority, it must be the case that, for all nodes j
that have positive equity value, pj" = p; = p;. Thus, if (Al.1) and
(A1.2) hold, it must be the case that there exists a zero equity value
node, i, such that

pr=pi (A14)
Regularity means that the risk orbit of every node contains some
node with a positive income. By the hypotheses of regularity and
Lemma 3, the risk orbit of 7/ must thus contain a positive equity
value node. Thus, for some /€ {1, ..., n—1}, there exists a path

i=iy—>iy—> >, —>i=m, (A1.5)
where all nodes in the path are zero equity value nodes except for
the last node, node m, and node m has positive equity value.

First we claim, by mathematical induction, that p,f; —p;, >0 for
nodes iy, ...i; ---i,_;. The assertion is true by (A1.4) for k =0. Now
suppose the assertion is true at k — 1. Because the nodes 7,---7,_,
are zero equity value nodes, their payments equal their inflows.
Thus for node i, k > 1—1, it must be the case that

n n
P = 2“/:‘,\.77? +e, and p; = ;Hﬁkl’f + -
1= J=
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Thus,

n

Pi: —P = anik(}’;r ;).

=

(A1.6)

By the induction hypotheses pi_l = p,_, > 0. Because, iy ; — i,
I > 0. Thus,

ik—1ik

IL,_ i (M —p;)>0. (A1.7)
Expressions (Al.1), (A1.6), and (A1.7) show that p,f; -y, > 0. This
result establishes the conclusion of the induction argument. This
argument implies, in particular, that the last zero equity value node
in the path, i,_,, satisfies the conclusion of the argument, that is,

p,f,r_l =P, >0 (A1.8)

+ —
= Em N

Next, we show that (A1.8) implies that E By the definition

of equity value,
j=1

Because 1 is a positive equity value node, absolute priority implies
that pj, =p,, =P, thus,

Ef —E; = Y11, (57 — ). (AL10)
j=1
Because, 7,_; — m, II; |, > 0. Thus,
Hi,_lm(p?——l _pl_—l) >0. (Alll)

Because, (Al1.1), (A1.10), and (A1.11) hold, it must be the case that
Et > E-. This assertion contradicts (A1.2), and this contradiction

m 't

shows that the clearing vector must be unique. O

Appendix 2 Example of Nonuniqueness of the
Clearing Vector in an Irregular Financial System
Some intuition for the importance of regularity for the uniqueness
result is provided by the following example. Suppose the system
contains two nodes, 1 and 2, both without any operating cash
flows. Moreover, each node has nominal liabilities of 1.00 to the

other node. In our notation we have that e=(0,0)", 7= (1, 1), and

n=[g g)].

This system is not a regular financial system, because the single
risk orbit of the system {1, 2} is not a surplus set. In this example,
any vector of the form p, =#(1,1),t €[0,1] is a clearing vector
for the system. In contrast, if we modify the example by giving
one cent to the first node by setting ¢’ = (0.01, 0), we see that the
unique clearing vector is given by p* = (1.00,1.00). The payment
vectors p,, t < 1, do not satisfy the absolute priority condition under
given ¢’ because they leave Node 1 with an equity balance of
0.01 despite the fact that Node 1 has not completely satisfied its
nominal obligation to Node 2.

References
Angelini, P, G. Maresca, D. Russo. 1996. Systemic risk in the net-
ting system. ]. Banking & Finance 20 853-868.
Brown, D. 1989. Claimholder incentive conflicts in reorganization:
The role of bankruptcy law. Rev. Financial Stud. 2 100-123.
Dulffie, D. 1988. Security Markets: Stochastic Models. Academic Press,
New York.

——, M. Huang. 1996. Swap rates and credit quality. J. Finance 51
921-949.

Elimam, A., M. Girgis, S. Kotob. 1997. A solution to post crash debt
entanglements in Kuwait’s al-Manakh stock market. Interfaces
27 98-106.

Horn, R., C. Johnson. 1985. Matrix Analysis. Cambridge Universtiy
Press, Cambridge, MA.

Huang, C.-F, R. Litzenberger. 1988. Foundations for Financial Eco-
nomics. North-Holland Press, Amsterdam, The Netherlands.

Karlin, S. 1959. Mathematical Methods and Theory in Games, Program-
ming, and Economics. Addison-Wesley Publishing Company,
New York.

Milgrom, J., ]. Roberts. 1994. Comparing equilibria. Amer. Econom.
Rev. 84 441-454.

Rochet, J.-C., J. Tirole. 1996. Interbank lending and systemic risk.
J. Money Credit and Banking 28 733-762.

Zeidler, E. 1986. Nonlinear Functional Analysis and its Applications I:
Fixed-Point Theorems. Springer-Verlag. Berlin, Germany.

Accepted by Phelim P. Boyle; received November 1999. This paper was with the authors 2 months for 2 revisions.

MANAGEMENT ScIENCE/Vol. 47, No. 2, February 2001

249

This content downloaded from 218.107.132.55 on Wed, 11 May 2016 01:34:15 UTC
All use subject to http://about.jstor.org/terms



	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14

	Issue Table of Contents
	Management Science, Vol. 47, No. 2, Feb., 2001
	Front Matter
	Technological Opportunities and New Firm Creation [pp.  205 - 220]
	Exploiting a Cost Advantage and Coping with a Cost Disadvantage [pp.  221 - 235]
	Systemic Risk in Financial Systems [pp.  236 - 249]
	Design for the Environment: A Quality-Based Model for Green Product Development [pp.  250 - 263]
	Scheduling and Reliable Lead-Time Quotation for Orders with Availability Intervals and Lead-Time Sensitive Revenues [pp.  264 - 279]
	Efficient Timing of Communication in Multiperiod Agencies [pp.  280 - 294]
	Generating Scenario Trees for Multistage Decision Problems [pp.  295 - 307]
	Sequential Testing in Product Development [pp.  308 - 323]
	Modeling a Phone Center: Analysis of a Multichannel, Multiresource Processor Shared Loss System [pp.  324 - 336]
	Back Matter



