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A CuLass ofF DisTorTioN OPERATORS FOR PRICING
FINANCIAL AND INSURANCE Risks

Shaun S. Wang

ABSTRACT

This article introduces a class of distortion operators, g, (u) =
d)[d)“(u) + ], where @ is the standard normal cumulative distribution.
For any loss (or asset) variable X with a probability distribution S,(x) = 1-
F(x), g,[S,(x)] defines a distorted probability distribution whose mean
value yields a risk-adjusted premium (or an asset price). The distortion op-
erator g, can be applied to both assets and liabilities, with opposite signs
in the parameter . Based on CAPM, the author establishes that the pa-
rameter ¢ should correspond to the systematic risk of X. For a normal
(u, 0’2) distribution, the distorted distribution is also normal with
U = u+ao and 0’ = 0. For a lognormal distribution, the distorted dis-
tribution is also lognormal. By applying the distortion operator to stock
price distributions, the author recovers the risk-neutral valuation for op-
tions and in particular the Black-Scholes formula.

INTRODUCTION

This study discusses the price of risk for both insurance and financial risks. The price
of an insurance risk is also called risk-adjusted premium, excluding expenses. Nu-
merous and diverse theories exist on the price of risk in the literatures of economics,
finance, and actuarial science. The objective of this study is to take a unified ap-
proach and integrate economic, financial, and actuarial pricing theories.

There are two competing economic theories for the price of risk. The expected utility
theory has dominated the financial and insurance economics for the past half cen-
tury. Its influence in actuarial risk theory is evident (see Borch, 1961; Bithimann, 1980;
and Goovaerts et. al., 1984). Over the past decade, a dual theory of risk has been
developed in the economic literature by Yaari (1987) and others. Based on Venter’s
(1991) observation on insurance layer prices, Wang (1995, 1996) proposed calculating
insurance premium by transforming the decumulative distribution function, which
turned out to coincide with Yaari’s economic theory of risk.

The first major financial pricing theory is the capital asset pricing model (CAPM).

Shaun Wang is with SCOR Reinsurance Company, Itasca, Illinois. The author gratefully thanks
Phelim Boyle, Stephen Mildenhall, Harry Panjer, Gary Venter, Julia Wirch, and Virginia Young
for helpful comments.
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16 THe JOURNAL OF Risk AND INSURANCE

Built on Harry Markowitz’s portfolio theory, CAPM was developed by William
Sharpe, John Lintner, Jan Mossin, and others. CAPM is a set of predictions concern-
ing equilibrium expected returns on assets. It has greatly affected our perception of
risk and our ways of thinking when making investment decisions. However, CAPM
has serious drawbacks when applied to insurance pricing. The CAPM assumption
that asset returns are normally distributed is no longer valid for insurance if loss
distributions are skewed. Another difficulty with insurance CAPM is the estimation
errors associated with the underwriting beta (see Cummins and Harrington, 1985).

Another centerpiece of the financial pricing paradigm is option-pricing theory. Over
the past two decades, the financial field has witnessed tremendous growth of activi-
ties using options and other derivatives. The wide acceptance of the Black-Scholes
formula contributed to this financial revolution. Some researchers noted the resem-
blance between an option and a stop-loss reinsurance cover, which called for an analo-
gous approach to pricing insurance risks. Unfortunately, the Black-Scholes formula
applies only to lognormal distributions, while actuaries work with a large array of
distribution forms. Furthermore, there are significant differences between option pric-
ing and actuarial pricing. Mildenhall (1999) provides an excellent discussion of the
differences between these two approaches. Option-pricing methodology defines prices
as the minimal cost of setting up a hedging portfolio, while actuarial pricing is based
on the actuarial present value of costs and the law of large numbers. Using financial
jargon, option pricing is done in a world of Q-measure, whereas actuarial pricing is
done in a world of P-measure.

In an age in which financial and insurance risks are becoming more integrated, it is
highly desirable to have a unified pricing theory. Many researchers, including Smith
(1986), Cummins (1990, 1991), Embrechts (1996), and others, have expressed this view-
point. Considerable efforts have been made by actuaries and financial economists to
connect financial and insurance pricing theories (see D’Arcy and Doherty, 1988, and
Gerber and Shiu, 1994). Although researchers are still trying to put together various
pieces of pricing theory puzzles, an overall picture has not yet emerged.

In the actuarial literature on the price of risk, the proportional hazards (PH) trans-
form is gaining the attention of actuaries. The PH-transform, as a special member of
the general class of Wang (1996), exhibits many desirable properties, especially in
pricing insurance layers. However, the PH-transform fails to reproduce the Black-
Scholes formula for lognormal risks. Moreover, the PH-transform cannot be applied
simultaneously to assets and liabilities.

This article proposes a new distortion operator in the general class of Wang (1996).
Unlike the PH-transform, this new distortion operator is equally applicable to assets
and losses. For stop-loss reinsurance covers, this distortion operator resembles a risk-
neutral valuation of financial options. This distortion operator connects four differ-
ent approaches: (i) the traditional actuarial standard deviation loading principle, (ii)
Yaari’s economic theory of risk, (iii) CAPM, and (iv) option-pricing theory.

The flow of this article is as follows: The “Distortion Operator and Insurance Pric-
ing” section introduces the concept of a distortion operator within the context of
insurance layer pricing. The “Choquet Pricing of Assets and Losses” section discusses
the pricing of assets and losses using distortion operators. The next section intro-
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A Cuass ofF DisTorTION OPERATORS FOR PRICING FINANCIAL AND INSURANCE Risks 17

duces a new distortion operator and discusses its properties. In “The Implied a From
Asset Prices” section, the author derives the implied distortion parameter from asset
prices. In “The Parameter a and Systematic Risk” section, based on the capital asset
pricing model, the author shows that the distortion parameter should correspond to
the systematic risk. In the “Recovery of the Black-Scholes Formula” section, by ap-
plying the new distortion operator to stock price distributions, the author recovers a
risk-neutral valuation of options, in particular the Black-Scholes formula. The next
section discusses the fundamental difference between a distortion operator and a
transformed distribution. The “Measure of Downside Risk and Tail Thickness” sec-
tion discusses some related measures of downside risk and tail thickness. The fol-
lowing section discusses some practical issues in pricing insurance, and the final
section gives two examples of pricing insurance using the new distortion operator.

DisTorTION OPERATOR AND INSURANCE PRICING

Let X be a non-negative loss random variable with cumulative distribution function
F,(x) = P(X < x). The decumulative distribution function, denoted by S (x) =1 -
F,(x), has a special role in calculating insurance premiums based on the fact that

E[X] = [ Sy (y)dy.

An insurance layer X(a, a+m] is defined by a payoff function

0, when0<X«<a,
X(@,a+m]=<X-a, whena<X<a+m,
m, whena+m<X,

where a is the attachment point (also called deductible or retention) and m is the
limit. The decumulative distribution function for the layer X(a, a + m] is related to
that of the underlying risk X by the following equation:

Sy(a+y),when0<y<m,
0, whenm < y.

SX(a,a-nn](y) = {

The expected loss for the layer X(a,a+m] can be calculated by

E[X(ara + m]] = I:SX(a,a+n1](y)dy = J':"'"’ SX(X)dx.

For a very small layer X(a, a + €], the net premium (expected loss) is Sx(a)- €. This
explains why S, is also called the “layer net premium density.” Lee (1988) gives a
detailed account of S, in relation to expected layer loss cost.

Venter (1991) showed that, for any given risk, market prices by layer always imply a
transformed distribution. Inspired by Venter’s insightful observation, Wang (1996)
suggested calculating premium by directly transforming the decumulative distribu-
tion function:
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18 THE JOURNAL OF Risk AND INSURANCE

H,[X] = [ g[Sy (x)]dx. 1)

The function g: [0, 1] = [0, 1] is an increasing function with g(0) = 0 and g(1) = 1. This
study refers to g as adistortion operator. A distortion operator transforms a probability
distribution S, to a new distribution g[S,]. The mean value under the distorted dis-
tribution, H [X], represents risk-adjusted premium, excluding acquisition or internal
expenses.

It is obvious that

H,[X(@,a+ml] = [ glSxaam @My = [ 8ISy (0)ldx.

For layer X(a,a+m] the risk-adjusted premium is the same whether (i) the layer X(a,
a + m] is treated as a stand-alone risk and g is applied to its decumulative distribu-
tion function SX(a,a+m](y) or (ii) the ground-up loss distribution is transformed to
8[S,(x)], from which we calculate the expected loss to the layer.

As demonstrated in Wang (1996), the desirable distortion operator for pricing insur-
ance layers should meet the following criteria:

e 0< g(u)<1, g(0)=0,and g(1) = 1. These conditions ensure that (i) for each value
of x, g[S,(x)] defines a valid probability and (ii) non-zero probability events will
still have (non-)zero probability after applying the distortion operator g.

® g(u) is an increasing function (where it exists, g’(1) 20). This is to ensure that
(i) the distorted probability g[S,(x)] defines another distribution and (ii) the risk-
adjusted layer premium decreases as the layer increases for fixed limit.

¢ g(u)is concave (where it exists, §”(#) 2 0). This is to ensure that (i) the risk load is
non-negative for every risk or layer and (ii) the relative risk loading increases as
the attachment point (retention) increases for a fixed limit.

* §'(0) = +oo. This is needed to ensure unbounded relative loading at extremely high
layers. Unbounded relative loading at high reinsurance layers seems to be sup-
ported by observed market reinsurance premiums (see Venter, 1991). Butsic (1999)
also showed that the loss beta is unlimited at very high layers.

Wang (1996) considered a number of elementary one-parameter functions and con-
cluded that only the power function g(u) = u*, (0 < r < 1) satisfied all these require-
ments. The power function corresponds to the PH-transform in Wang (1995). Wang,
Young, and Panjer (1997) give a characterization of the PH-transform by an axiom
regarding evaluation of compound Bernoulli risks. Although the PH-transform has
some unique and desirable characteristics, researchers and practitioners have ex-
pressed some concerns, enumerated as follows:

1. The PH-transform of a lognormal distribution is no longer a lognormal distribu-
tion. To some this is a bit of a disappointment since it does not yield an analogy to
the Black-Scholes formula for pricing financial options.
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A Class of DisTorRTION OPERATORS FOR PRICING FINANCIAL AND INSURANCE Risks 19

2. The PH-transform has a very simple functional form. However, this simplicity
also comes with a limitation in terms of flexibility in its shape. To some insurance
market price observers, the PH-transform sometimes yields a relative loading that
increases too fast at high layers.

3. The PH-transform cannot be applied simultaneously to both assets and liabilities,
as explained in the next section.

CHoaueTt PrICING OF Assers AND LossEs

With a broader perspective, we allow a loss variable X to be negative to include as-
sets, and allow an asset variable A to be negative to include losses. For a consistent
valuation, an asset A can be viewed as a negative loss X = -A and vice versa.

For any variable X with decumulative distribution function S,(x), (- < x < =), the
Choquet integral with respect to distortion operator g is defined by

Hg[X] = Ji {g[Sx(x)] - 1} dx + I:g[Sx(x)] dx. (2

Several authors, including Yaari (1987); Wang (1996); Wang, Young, and Panjer (1997);
and Chateauneuf et al., (1996), suggested using the Choquet integral as a general
pricing framework.

Definition 1. For a risk X and a real-valued function h, we say that Y = h(X) is a
derivative of X, since the payoff of Y is a function of the outcome of X. If the function
his nondecreasing, we say that Y is a comonotonic derivative of the underlying risk X.

Theorem 1. When using the Choquet integral H_ to price a comonotonic derivative
Y = h(X) of risk X, the following two methods are equivalent:

¢ Distortion Method: treat Y as a stand-alone risk and apply g to S, directly:

H,[Y]= [ (g[S, (y)] - dy + [ gIS, (v)ldy.

¢ Transformation Method: first apply the distortion operator g to the distribution of
the underlying risk X that Sy.(x) = g[S,(x)]; then evaluate the expected value of Y
= h( X’) under the transformed (ground-up) distribution Sy..

Theorem 1 shows that the Choquet integral H, facilitates a risk-neutral valuation of
comonotonic derivatives. A layer X(a, a + m] is a comonotonic derivative of the un-
derlying loss variable X. Thus the Choquet integral H, facilitates a risk-neutral valu-
ation for insurance layers. However, the above two methods are not equivalent for
derivatives that are not comonotonic with the underlying risk. For example, con-
sider an insurance contract that pays the full loss if the loss is below a limit m, and
zero payment otherwise. The payoff Y = X when X <m, and Y = 0 when X >m. This
contract is not a comonotonic derivative of the underlying risk. The two methods in
Theorem 1 are not equivalent for pricing such a contract. The distortion method (with
concave g) always produces a non-negative loading, while transforming the ground-
up loss distribution can yield a negative loading. Such an example can be found in
Wang and Young (1998).
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20 THe JOURNAL OF Risk AND INSURANCE

For the loss variable X, this article uses concave distortion operator g so that H [X] 2
E[X]. That is, the risk-adjusted premium is no less than the expected loss value.

Through expressing an asset as a negative loss, it can be shown that (see Denneberg,
1994)

H,[-A] = -H_[A],
where ¢g*(u) = 1 - g(1 — u) is the dual distortion operator of g.

If g is concave, then g* is convex, and
H, [A] < E[A].

That is, the price of an asset is no greater than the expected asset value.

In most cases, a distortion operator g and its dual distortion operator g* are from
different parametric families. The desirable properties of ¢ might not hold when con-
sidering g*. A family of parametric distortion operators g may exhibit desirable prop-
erties from a loss perspective, but the same parametric family may not be appropri-
ate from an asset perspective.

If we apply the PH-transform g(u) = u” to insurance loss distributions, then we need
to apply the dual distortion operator g*(1) = 1 — (1 — u)" to asset distributions. Like-
wise, if we apply the PH-transform g(u) = u” to assets, then we have to apply the dual
distortion operator g*(u) = 1 - (1 — u)" to losses. Using different classes of parametric
distortion operators for assets and losses does not promote a unified approach to
pricing financial and insurance risks. This drawback is associated with most (but not
all) distortion operators. Symmetric treatments of assets and liabilities are achiev-
able, if one chooses a particular family of distortion operators g.

A NEew DistorTioN OPERATOR

Let @ (x) be the standard normal cumulative distribution function with a probability
density function

dd(x) 1 _on
= = e , f — oo [
f(x) T me or <X<oo

Let x = @ (1) denote the inverse function of u = ® (x). We define a distortion opera-
tor as follows:

8a(W) = V(B (1) + a1, ®)

where « is a real-valued parameter. Note that g, in equation (3) satisfies the follow-
ing properties:

e The limits are

2,(0) = ul;lfaga(u) =0, and g, (1) = ul'_l{{l_ga(u) =1.
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A Class of DisTORTION OPERATORS FOR PRICING FINANCIAL AND INSURANCE Risks 21

e The first derivative is

dg,(u) _ fix+a) )

du fx)

¢ The second derivative is

d’g.(u) _—of(x+a)
du® fx)?

Thus, g, is concave (8. > 0) for positive ¢, and convex (g, >0) for negative .

e For a >0,

lim e™='/2

X0

84(0) = lim

u—0+

= 400,

dg,(u) _
du

¢ The dual distortion operator of g, is

S =1-g,(1-u)=g_,(u).

In other words, the dual distortion operator of g, canbe obtained by simply chang-

ing the sign of «. This property is due to the symmetry of the standard normal
distribution around the origin.!

Therefore, for @ >0, g, meets all necessary criteria as listed for a desirable distor-
tion operator.

Definition 2. For the distortion operator g, = D[P (u)+al, a special notation is
designated for the Choquet integral:

HIX; 0 = [ (8.5, (0)] - Ddx+ [ g,[5,(x)ldx. @)

Building on the properties for the general class in Wang (1996), the properties of
H[X; o] are summarized as follows:

e min[X] £ H[X; ] £ max[X].

* H[X; ] is an increasing function of «. As a increases from —wo to 400, H[X; ]
increases from min[X] to max[X].

* For the constant ¢, H[c; o] =cand H[X+¢; o] = H[X; a] +c.

¢ For the nonconstant variable X, H[X; o] < E[X]if o <0; H[X; o] = E[X]if o =0;
and H[X; o] > E[X]if a > 0.

e Forb>0,H[bX; o] =bH[X; a].

'Note that 1 - ®(x) = ®(-x)and &' (1 - u) = ~® ' (u). For u = ®(x),®'(1 - u) = -x,and e (u) =
1-0[@'(1-u)+a]=1-D(-x +a) =g_(u).
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22 THE JOURNAL OF Risk AND INSURANCE

e Forb <0, H[bX; ] =bH[X; -] As a special case, H[-X; a] =-H[X; -« ].

¢ If X, and X, are comonotone?, then H[X +X,; ] = H[X; o] + H[X,; o]. Two lay-
ers of the same risk are comonotone, and thus

H[X(a,b]; ] + H[X(b,c]; ] = H[X(a,c];a], wherea < b < c.

* Forany two variables X, and X,, H[X +X,; ] SH[X; a]+H[X,; a],if & >0;and
H[X +X,; a]2H[X; a] + H[X,; a], if a <0. These inequalities indicate the ben-
efit of diversification, with the exception that there is no diversification between
comonotonic risks.

e With positive « for losses (or negative a for assets), H[X; o] preserves the first
and second order stochastic dominance (see Rothschild and Stiglitz, 1970).

e For a Bernoulli (@) risk withP{X=1}= @, if a >0,
H[X; a]
im———— =
o-0 E[X]
If risk X has a Normal( i, %) distribution with decumulative distribution function
S,,then S,. =¢[S,]is another normal distribution with 4" = 4 + @o and ¢’ = 0. Thus,

H[X; a] = E[X]+«a o [X]. This recovers the traditional standard deviation premium
principle, where even the parameter ¢ remains the same for both methods.?

If risk Y with distribution S has a lognormal distribution such that In(Y) ~ Normal( 4, 62),
then S,. = g[S, ] is another lognormal distribution with 4’ = u+ac and 6’ =0.

85(0) = +oo.

Stock prices are often modeled by lognormal distributions (so stock returns follow
normal distributions). Results are equivalent whether distortion operator g, is ap-
plied to the stock price distribution or to the stock return distribution.

The distortion operator g, can be applied to any probability distribution. Although
there is no closed formula for g, , numerically g, is fairly easy to calculate on a
computer. Many computer languages have both ® and &~ as built-in functions. For
instance, in Microsoft Excel, ® (y) can be evaluated by NORMDIST(y, 0, 1, 1) and ®"(y)
can be evaluated by NORMINV(y, 0, 1).

In modeling correlation between risks, one of the most flexible models is the normal
copula, which involves the functions ® and & ! (see Frees and Valdez, 1998; Wang,
1998b). By the same token, the distortion operator g, can also be a practical tool for
calculating risk load. The distortion operator g, can be generalized to multivariate
applications by applying g, to their joint cumulative distribution function.

THE IMPLIED o FROM Asser PRricEs

It is assumed that assets can be priced by applying H[X; — ] to the present value of
the future asset price at some moment in time. From current asset price and the fu-
ture price distribution an implied ¢ can be derived.

? There exist a variable Z and nondecreasing functions f, and £, such that X, = f, (Z) and
X,=f,(Z). For a more detailed discussion on comonotone risks, see Dennenberg (1994).

3 If X is normal, then for any distortion function S Hg[X] reduces to the standard deviation
principle. With the specific distortion operator g,, it happens that a is the same as the
parameter used in the standard deviation principle.
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One-Period Horizon

Assume a time horizon of one year. Consider an asset (stock) i with current price
A(0) and prospective ending period price A(1). Let R = A (1)/A(0) -1 denote the per
annum return compounded annually. Assume that R, has a normal distribution with
mean E[R] and standard deviation ¢ [R].

Assume that the current stock price, A (0), can be derived by applying H[X; -« ] to
the present value of ending period stock price, A(1). We have

A0)=H[A,(1) / (1+7,);-a,| = H[A,0)(1+ R)) / (1 +7,);-a;]

where 7, is the per annum risk-free rate compounded annually.

As a result, the risk-adjusted rate of return for stock i must be the same as the risk-
free rate:

which implies that
E[R.]-
o< [R;] /3 (5)
' o[R]

Note that an asset i can also refer to an asset portfolio. For the market portfolio, M,
the risk-adjusted rate of return must equal the risk-free rate:

r. = H[Ry;-ay] = E[Ry] - a),0[Ry],
which implies that

_E[Ry]-7,
M = TSR]

The right-hand side of the above equation is also called the market price of risk (see
Cummins, 1990, p. 135).

A Multi-Period Horizon

Now the time horizon is extended from 1-period to T-period. Without loss of gener-
ality, assume that the current time is t = 0. For an asset (stock) i, letR,, t=1,2,...,T,
denote the per annum return compounded annually in the time period i. Let A (t) be
the price of stock 7 at time . We have fort=1,2,...,T,

R; =InA;(t) - InA,(t - 1).

In financial economics, it is commonly assumed that R, and R, are independent for
different time periods t and s. For simplicity, assume that R, has constant mean and
standard deviation in all time periods; that is, E[R,] = E[R] and ¢ [R,] = 6 [R], for t =
1,2,...,T
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24 THE JOURNAL OF Risk AND INSURANCE

Let R, denote the total T-period return for stock i (without compounding). Therefore,
T T
R(T)=1In A(T)-1InA,0) = Y {InA,(t) - InA,(t- 1)} = Y R,,
t=1 t=1
with
T
E[R(T)]= X E[R,]=T-E[R}],
t=1
and

T
Var[R(T)] = Y {o[R,]})* = T - {o[R,]\*.
t=1
The total T-period return R(T) for stock i has mean = T-E[R ] and standard deviation =
T2 . o[R,]. Assuming that for some «, the risk-adjusted rate of return for stock i,

H[R,(T);~;] equals the total T-period risk-free rate, T'r,, producing
T E[R]-o,JTo[R]=T-r,
and thus

_ =|ER]-7 (6)
ai_ﬁ{ o[R;] }

The implied parameter ¢, increases as the time horizon T increases; more precisely,
o ,is proportional to the square root of T.

Note that one can progressively refine the 1-period from one year to one quarter, one
month, one day, and so on, while keeping the T-period fixed at one year. By progres-
sively refining the time periods, one eventually approaches a geometric Brownian
motion model for the asset price movement. In a geometric Brownian motion model,
however, there is a need to re-interpret R, as an instantaneous rate of return com-
pounded continuously.

Continuous Time Asset Price Model

In a continuous time model, stock prices are assumed to follow a geometric Brown-
ian motion (GBM). Consider a stock (or stock index) i. The stock price A (t) satisfies
the following stochastic differential equation:

dA,(t) _

= pdt + o.dW,, @)
Al(t) ul + ol 1

where dW, is a random variable drawn from a normal distribution with mean equal
to zero and variance equal to dt. In equation (7), y; is called the expected rate of

return for the stock, and o;, is called the volatility of the stock return. Let A (0) be the
current stock price at time zero. For any future time T, the prospective stock price
A(T) as defined in equation (7) has a lognormal distribution (see Hull, 1997, p. 229):
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A Class of Distortion OPERATORS FOR PRICING FINANCIAL AND INSURANCE Risks 25

InA,(T) - In4,(0) ~ Normal(y, - 0.567)T,0}T]. 8)
Next we apply the pricing formula H[X; - ] to the present value of future stock
price A(T).

For any fixed future time T, no arbitrage condition (or simply, market value concept)
implies that the risk-adjusted present value of future stock price must equal the cur-
rent stock price. Therefore,

A(0) = H[e™ A(T);—or, ) = e "H[A(T); -], ©)
where 7, is the risk-free rate compounded continuously.
Now equation (9) is rewritten as
A,(0) = e "E[B(T)],

where B(T) is drawn from a distorted distribution

SBi(T)(y) = &g [SA,»(T)(y)]’
with B(0) = A(0). It can be verified that
InB,(T) - InB,(0) ~ Normal [(4, - 0.56))T - &,0,VT, 6T}, (10)

The no-arbitrage condition in equation (9) implies that

which in turn implies that

_ W =nNT (11)

0.

.

The implied ¢, in Equation (11) coincides with the market price of risk of asset i as
defined in Hull (1997, p. 290). It is a continuous analog of the implied ¢, in equation
(6) under a discrete model. With the ¢; in equation (11), §_,, transforms the asset

price distribution S 4 to a distorted distribution Spr) With

InB(T) - InB(0) ~ Normal[(r, - 0.5067)T,67T], (12)

where both the distortion parameter «; and the expected stock return g, dropped
out from the distorted distribution S, ., .
1

THe PARAMETER o AND SysTemartic Risk

In the previous section, the author derived some implied o from asset prices. This
section revisits the capital asset pricing model and establishes that the parameter o
should correspond to the systematic risk of X with respect to the aggregate risk port-
folio.

From a risk portfolio perspective, only systematic risk should be priced; this prin-
ciple underlies the CAPM. In order to clarify the meaning of systematic risk, we need
to specify the aggregate risk portfolio. In the stock market, systematic risk for a stock
refers to its correlation with the market portfolio (a broad stock index). In the insur-
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ance market, systematic risk for a loss variable may refer to its correlation with the
insurance industry aggregate loss. As pointed out by Gary Venter, given the same
loss distribution, a Florida catastrophe cover is more risky than other types of insur-
ance contracts, simply because Florida catastrophe losses are highly correlated with
industry aggregate losses. The above observations suggest that, when applying the

pricing formula H[X; - &,], the parameter o should correspond to the systematic risk of X.

CAPM assumes that all investors have the same one-period horizon, and asset re-
turns have multivariate normal distributions. Let R,, and ¢ [R,,] be the return and
standard deviation of return for the market portfolio M. The CAPM assets that

B[R] =7 + B{EIR,] - r,},
where

Cov[R;, Ry]
Bi=——m
{o[R\1}
is the beta of stock i.
The CAPM equation can be restated in a different form:
E[R]-7 {E[RM]—rf}
—pi1 _PiMYyT o T,

o[R] o[Ry] 4

where
_ Cov[R;,Ry]
M G[R,’] . O'[R/w]
is the correlation coefficient between R,andR,,.

Equations (13) and (5) show the following relationship between the implied «; for
stock i and the implied ¢,, for the market portfolio:

QA =Pim Oy (14)

In other words, the implied «; corresponds to the systematic risk of asset i (or its
correlation with the market portfolio).

Equations (13) and (14) also have the following relationship in terms of beta and the
market risk premium:

a;-o[R]=B; - {ay - o[Ry ]}

Recall that the time horizon can be extended from 1-period to T-period. LetR,,, t =1,
2,...,T, be the return for the market portfolio M in time period t. Assume that for t =

1,2,...,T there is a constant correlation coefficient between R,and R,;

p, ., = COV[R,«,,RM,]
"M 7 6[R,]-o[R,,)
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It can be verified that
Cov[R(T), Ru(T)] = pi,m - OIR(T)]- SR\ (T)],
and the relation ¢, = p; &) still holds for the T-period time horizon.

Recall that one can progressively refine the length of one period while keeping the T-
period fixed. This refining process will eventually converge to a special case of the
intertemporal, continuous time CAPM (ICAPM) of Merton (1973), where assets re-
turns are described by geometric Brownian motions and correlations between assets
are described instantaneously. More specifically, it is assumed that (i) the price move-
ment of individual asset i can be described by the stochastic differential equation (7)
and (ii) at each moment in time, the dW/’s for individual assets follow a multivariate
normal distribution. Under these assumptions, the price movement of the market
portfolio (a broad stock index) can be described by

dAu(t)
Au(t)

with p,, =Cov[dW,dW, | being a constant over time. In this continuous time frame-
work, the relation a, = p M Oy also holds for any time horizon T.

= U, dt + o,dW,,,

CAPM assumes that asset returns have multivariate normal distributions. This is a
reasonable assumption for asset returns. But it can be unrealistic for insurance appli-
cations in which loss distributions are highly skewed. Nevertheless, the general prin-
ciple of CAPM still applies in insurance applications. Now we use H[X; ¢ ] to extend
CAPM to variables having other than normal distributions.

Note that any random variable can be transformed to a normal variable. For any

variable, X, F,(X) has a uniform distribution and ®[F,(X)] has a standard normal
distribution.

Consider an aggregate risk portfolio
Xy X, X,
where k is very large. The author denotes
Z=X +X,+ -+ X,

as the aggregate risk. Assume that the transformed variables
{@7 R X)L @7 [F (X)), - -, @7 [F, (X1}
have a multivariate normal distribution. For any risk X,
Px,z = Cov[@ ' [F(X)], @7 [F,(2)]], (15)

is ameasure of the systematic risk of X. The correlation measure P, ,in(15)is similar
to the concept of rank-order correlation (see Frees and Valdez, 1998 Wang, 1998b),
and it recovers the traditional correlation coefficient for normally distributed vari-
ables.
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As a generalization of CAPM, when we put forth a general pricing formula H[X; ¢, ]
with a, = p,, o, reflecting the systematic risk of X, we get an additive pricing
formula for pricing individual risks. However, for skewed distributions, risk diversi-
fication by pooling individual risks may not be as effective as in the case of normal
distributions. For finite insurance risk portfolios, the parameter «, is likely to be
higher than indicated by p, , o, to reflect the residual process risk. Other important
factors that need to be considered when selecting ¢ include (i) parameter uncer-
tainty in the estimated loss distributions, (ii) anti-selection among insurer buyers,*
and (iii) the cost of capital commitment. With the presence of parameter uncertainty,
a higher o, may be justifiable to reflect market friction and incomplete information.

Lastly we consider the pricing of comonotonic derivatives for an underlying risk X.
For an increasing function f, Y = f{X) has the same level of systematic risk as X; that is
P,,= Py, Therefore, a,= o, and the same o should be used in pricing X and its
comonotone derivative Y. For the pricing formula H[X; a ,] with o, reflecting the
systematic risk of X, the result in Theorem 1 still holds true for risk-neutral valuation
of the comonotonic derivatives of X.

RecoVERY OF THE BLAck-ScHOLES FOrRMuLA

A European call option on the underlying stock (or stock index) i with a strike price
K and exercise date T is defined by the following payoff function

0, whenA,(T) <K,
A(T)-K, whenA,(T)>K.
The expected payoff for this option can be calculated as

E[Call(K)] = [ Seug(0)dx = [ S 0 r) (y)dly.

Being a nondecreasing function of the underlying stock price, the option payoff,
Call(K), is comonotone with the terminal stock price, A(T); thus it has the same level
of systematic risk as the underlying stock i. Therefore, the same « as in equation (11)
should be used to price the option Call(K), and

H[Call(K);=a] = [ g_u[Sca(0)] dx= [ Sy ry ()dy.

In other words, the price of a European call option is the expected payoff under the
distorted (risk-neutral) stock price distribution S BTy where the expected stock return
u; is replaced by the risk-free rate r_. This option price is exactly the same as the
Black-Scholes formula.

Call(K) = {

There is an analogy between (i) an unlimited stop-loss cover with retention K, and
(ii) a European call option with strike price K. Both are comonotone derivatives of
the underlying (loss or asset) variable. By applying the pricing formula H[X; «] to
the stop-loss variable, we get a stop-loss premium that is the expected stop-loss value
under a distorted ground-up loss distribution. Likewise, the price for a European call
option can be evaluated as the expected option payoff under the distorted (risk-neu-

* As an example, relative to the average population, the mortality rates deviate differently
among life annuity buyers as opposed to life insurance buyers.
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tral) distribution for the underlying stock price, where the expected stock return p; does
not appear in the option pricing model. Using H[X; o] adds a new perspective to
the well-known risk-neutral valuation methodology of options (see Cox and Ross, 1976).

Several researchers, including Smith (1977) and Doherty and Garven (1986), pro-
posed using an option-pricing model to price insurance contracts. Cummins (1988)
applied the Black-Scholes formula to insurance guaranty fund premium. However,
as a major limitation of the Black-Scholes formula in insurance applications, the op-
tion pricing models are not applicable for the full range of distributions used by
actuaries to describe prospective losses. D’Arcy and Doherty (1988, pp. 63-64) made
the following comment on the option-pricing model:

The distribution assumptions required to use option pricing are quite spe-
cific, either normality or lognormality. These distributions may provide
reasonable approximations when the underlying variable is a diversified
portfolio of financial assets or policy liabilities. In this chapter we were
careful to use options models that met this criterion. But consider a rein-
surance policy written on a single direct policy. The reinsurance payoffs
may well have the characteristics of an option. However, it would be fool-
hardy to use this feature as sufficient justification for pricing the reinsur-
ance contract with an option-pricing model. If the payout on the direct
policy cannot be reasonably approximated by a lognormal or normal dis-
tribution, this approach could be seriously in error.

While the Black-Scholes formula relies on the lognormal distribution assumption,’®
the pricing formula H[X; o] can be applied to any loss distributions.

As a final note, this section revisits equation (11), where the implied @ increases as
the time horizon lengthens. The pricing formula H[A(T); - o ] with & in (11) reveals
the intimate connection between Merton’s intertemporal, continuous time CAPM
and the option pricing theory. This interesting result may have applications in pric-
ing long-tailed insurance when losses are not reported or settled until many years
after the policy period expires. If the development of emerged losses can be mod-
eled by geometric Brownian motions, the parameter o would be proportional to the
square root of the time period from policy inception to the date of loss settlement.
From another perspective, for long-tailed insurance risks, parameter ¢ reflects both
the magnitude and duration of capital commitment. The relationship (11) between
o and duration T may be useful in calculating market values for insurance liabilities
(including loss reserve discounting).

ReLaTiION WIiTH TRANSFORMED DisTRIBUTIONS

A distortion operator g is fundamentally different from a transformed distribution
Y = h(X). Although every increasing transform Y = h(X) can be written in the form
S, (%) = g[S,(x)] with

g(w) = Sy(h (S5 ),

® Strictly speaking, this is not an accurate statement. The Black-Scholes approach can be applied

to stochastic processes other than geometric Brownian motion; for example, see Gerber and
Shiu (1994).
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the implied ¢ depends on the underlying distribution S,. When applied to a different
distribution S,, we get a different implied g.

Biihmann (1980) proposed a premium loading method by the Esscher transform:

e f(x)
E[eaX] .

frx)=

The Esscher transform of a Normal( i, 6?) distribution yields Normal( u+ ac?, o).

Gerber and Shiu (1994) applied the Esscher transform to the logarithm of X, which
can reproduce the Black-Scholes option pricing formula. Venter (1998) suggested using
the log-Esscher transform as an alternative to the PH-transform for lognormal risks.
However, neither the Esscher nor the log-Esscher transform corresponds to a fixed
distortion operator.

Like Venter (1998), Butsic (1999) came close to conceptualizing the distortion opera-
tor g, in equation (3). Butsic suggested a generalized PH-transform by defining

Sy(x) =[S (0)]", with 0 < g(x) < 1. (16)

He considered the implied g(x) by shifting the lognormal location parameter. He
also considered a fractional PH-transform

Sy(x) = [Sx ()] with 0 < m. (17)

Note that neither formula (16) nor (17) corresponds to a distortion operator, since the
implied distortion

Sl w]

g(u) =

relies on the underlying risk distribution S,. If we replace the underlying risk distri-
bution S, by S,., then formula (16) may imply a different distortion. The same com-
ments apply to formula (17).

As a further clarification, a transformation of variable Z’= h(Z) can induce a distor-
tion:

g(w) = S, (n7[s7'w))),

provided that Z and h(-) are kept fixed and not varying with the underlying risk
distribution S, to which g is applied. For instance, consider a simple scale transform

Z'= pZwith 0 < p < . It can be verified that

* if Z has an exponential distribution, then the induced distortion g(u) = 4/* gives
the PH-transform;

* if Z has a lognormal distribution with In(Z) ~ Normal(0, 1), then the induced dis-
tortion g(u) = ®[®'(u) + In(p)] is the same as g, in equation (3) with = In(p).
* if Z has a gamma distribution, then the induced distortion operator preserves

gamma distributions;
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¢ if Z has a Pareto distribution with S,(z) = (1 + z) -», then the induced distortion is

g(u) = [1 +@? -1/ P]-p. Venter (1998) discussed such a distortion function.

Measure oF Downsipe Risk AND TaIL THICKNESS

In managing financial and insurance risks, we often need a measure of downside
risk. A good measure of downside risk is essential in solvency measurement, risk-
based-capital requirement, value-at-risk calculation, and dynamic financial analysis.

The distortion operator g, can also be used as a general risk measure.

Butsic (1994) advocated the use of expected policyholder deficit (EPD) as a measure
of downside risk potential. He used a constant EPD ratio (to the expected loss) in
deciding risk-based capital requirements. In his recent paper, Butsic (1999) suggested
that the EPD should be calculated with respect to a risk-adjusted distribution. The
distortion operator g, can be used to transform any underlying distribution to a
risk-adjusted distribution, from which a risk-adjusted EPD can be calculated.

Artzner et al. (1998) (also see Artzner, 1999) proposed a set of rules for a coherent risk
measure, which in general would lead to a distortion operator. As a variation of the
EDP concept, Artzner and his co-authors advocated a risk measure based on the
expected deficit in excess of a prescribed (say, 100p*) percentile, which corresponds
to a distortion operator:

u, O0<u<p,

g(u)={p’ p<u<l

We can modify their risk measure by using the following composite distortion
operator:

8.,u), O0<u<p,
u) =
8w {ga(p), psu<l,

where g, is defined in (3). For lognormal risks, with an appropriate value of «, this
modified risk measure corresponds to the price of an option with a strike price equal
to the 100 p* percentile value.

Other measures of deviation can be defined utilizing the entire distribution, reflect-
ing both upside and downside potentials. Wang (1998a) used the PH-transform (r =
0.5) to define a right-tail deviation. As an alternative, H[X; « ] can be used to define
measures of variability. We define a right-tail deviation and a left-tail deviation,
respectively, as follows

RD,[X] = {H[X;a] - E[X]} / «
LD,[X] = {E[X]-H[X;-a]} / a,
for some positive a (say, o =0.1).

For a normal distribution Normal( i, 6?), we have RD ,[X] =LD ,[X] = o.
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In a financial modeling, empirical asset return data sometimes indicate a two-sided
distribution, which has thicker tails than a normal distribution. Without referring to
higher moments, we can define an index for the tail thickness relative to a normal
tail. For an asset return variable X, we define a right-tail index and a left-tail index

by

RTL,[X] = RD,,[X]/ RD,[X],
LTI, [X] = LD,,[X] / LD,[X],

for some positive o (say o = 0.1).

For a normal distribution, RTI ,[X] = LTI ,[X] = 1, since the tail deviations do not

vary with . A tail index greater than one indicates that the tail is heavier than a
normal tail.

Some PracTicaL Issues IN PrICING INSURANCE

A prerequisite for using the pricing formula H[X; «] is to have an estimated loss
distribution for the underlying risk. The monograph by Klugman, Panjer, and Willmot
(1998) serves as an excellent source for modeling loss distributions. However, there
remain a number of judgment issues related to modeling loss distributions. It is
often desirable to explicitly reflect parameter uncertainty regarding frequency and
severity in the estimated loss distribution. By modeling parameter uncertainty, one
may incorporate knowledge or judgment beyond the underlying data. For a fixed
«a, the pricing formula H[X; ¢ ] automatically picks up an extra loading for param-
eter uncertainty.

In addition to frequency and severity risk, another source of uncertainty is timing
risk. With prolonged duration of loss reporting and loss payments, both the invest-
ment income and the cost of capital commitment increase. Equation (11) may be
useful in quantifying this intricate relationship.

The pricing formula H[X; a] can be applied in a number of ways, depending on the
circumstances. In pricing an excess layer, one can apply H[X; ] to the severity dis-
tribution to derive a relativity in risk loading by layer. This approach is fairly handy,
given that industry-wide severity curves for many lines of insurance are readily avail-
able from the Insurance Services Office (ISO) and the National Council on Compen-
sation Insurance (NCCI). When pricing aggregate stop-loss contracts, one can apply
H[X; ] to the aggregate loss distributions.

Undoubtedly the selection of « is crucial in any implementation of the pricing for-
mula H[X; o]. While CAPM suggests that the parameter o reflects the level of
systematic risk, in insurance applications one should not estimate ¢ based solely on
statistical regressions using historical data. An alternative method for estimating the
systematic risk is by employing a risk factor analysis. Such an analysis first identi-
fies a number of key factors that influence industry aggregate losses. Examples of
such key factors include conceivable major natural catastrophes, possible dramatic
changes in court rulings, unexpected claim cost inflation, and sudden changes in the
interest rate yield curve. The systematic risk of X can then be estimated by evaluat-
ing the sensitivity of X to these key factors. When selecting ¢, one should also take
into consideration (i) parameter uncertainty in the estimated loss distribution,
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(ii) anti-selection and moral hazards by insurance buyers, (iii) the cost of capital com-
mitment, and (iv) competitiveness of the market.

ExampLes
Two numerical examples are presented in this section.

Example 1. Consider a ground-up liability risk X with a Pareto severity distribution

2000

12
——) , forx>0.
2000 + x

S0 =

To compare risk loading by layer, assume that the ground-up frequency is exactly
one claim, and then apply the pricing formula H[X; a] to the severity distribution.
For numerical illustration, choose a loading parameter & = 0.1. If the loss is capped
by a basic limit of $50,000, the expected loss is $4,793 and the risk-adjusted premium
is $5,487, implying a 14.5 percent loading. As shown in Table 1, the relative loading
increases at higher layers.

A comparison can be made with the PH-transform loading method. APH index r =
0.9245 is selected to yield the same relative loading (14.5 percent) for the basic limit
layer ($0, $50,000). Table 1 shows that the PH-transform method produces a risk

loading that increases much faster than using distortion g, .

Tasie 1
Risk Load by Layer Under Distortion g, and PH-transform

Layer Expected PH Relative HIX; a] Relative

in 000's Loss Premium Loading % Premium Loading %
(0, 50] 4,793 5,487 14.5 5,487 14.5
(50, 100] 657 910 38.4 845 28.6
(100, 200] 582 857 47.2 769 322
(200, 300] 307 475 54.7 414 349
(300, 400] 204 325 59.6 278 36.6
(400, 500] 150 246 63.3 207 37.8
(500, 1000] 428 728 70.1 598 39.9
(1000, 2000] 373 675 81.1 533 43.0
(2000, 5000] 420 819 94.7 616 46.5
(5000, 10000] 271 567 109.5 406 49.9

Example 2. Consider a hypothetical example of a satellite launching. Suppose that
the estimated loss distribution for a commercial satellite launching is a Bernoulli
type, with 5 percent probability of a total loss at $100 million. This risk is shared by
a number of (re)insurers worldwide. The satellite launching loss distribution is

005, 0<x<100
=1 0 100<x
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Using the distortion operator g, in equation (3) with @ = 0.1,

S _ |84(0.05) = 0.0612, 0<x<100
SalSx(¥)] = 0, 100<x

This implies a risk-adjusted premium (excluding expenses) of $6.12 million, or a 22.4
percent loading. The large size of risk may indicate a higher systematic risk (due to
higher risk concentration combined with a relatively small statistical sample for esti-
mation). Thus a higher o may be needed for pricing this risk. If & =0.15is used, the
result is a risk-adjusted premium of $6.75 million, or a 35.0 percent loading (exclud-
ing expenses).

CONCLUSION

The actuarial literature has witnessed several decades of searching for a sound pric-
ing formula. This long search has been disjointed and along different paths. The new
pricing formula H[X; «] is like a piece of connecting puzzle that ties together four
different approaches: (i) the traditional standard deviation principle, (ii) Yaari’s eco-
nomic theory of risk, (iii) the capital asset pricing model, and (iv) option pricing theory.

Unlike other distortion operators in Wang (1996), the pricing formula H[X; « ] offers
a symmetric treatment of assets and losses, connects the CAPM, and recovers the
Black-Scholes formula for option prices. It promotes a unified approach to pricing
financial and insurance risks. The pricing formula H[X; a] has potential applica-
tions not only in increased limits ratemaking and reinsurance layer pricing, but also
in pricing financial risks such as bond defaults and securitization deals.

With great promise in theoretical development and practical application, more re-
search is needed to further explore the properties of this pricing formula.
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