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 ?The Journal of Risk and Insurance, 2000, Vol. 67, No. 1, 15-36

 A CLASS OF DISTORTION OPERATORS FOR PRICING
 FINANCIAL AND INSURANCE RISKS

 Shaun S. Wang

 ABSTRACT

 This article introduces a class of distortion operators, ga(t) =
 D[44-(u) + a], where D is the standard normal cumulative distribution.
 For any loss (or asset) variable X with a probability distribution Sx(x) = 1-

 Fx(x), ga [Sx(x)] defines a distorted probability distribution whose mean
 value yields a risk-adjusted premium (or an asset price). The distortion op-

 erator ga can be applied to both assets and liabilities, with opposite signs
 in the parameter a. Based on CAPM, the author establishes that the pa-
 rameter ca should correspond to the systematic risk of X. For a normal
 (L,aU2) distribution, the distorted distribution is also normal with
 '= u + aa and a5' = a. For a lognormal distribution, the distorted dis-
 tribution is also lognormal. By applying the distortion operator to stock
 price distributions, the author recovers the risk-neutral valuation for op-

 tions and in particular the Black-Scholes formula.

 INTRODUCTION

 This study discusses the price of risk for both insurance and financial risks. The price
 of an insurance risk is also called risk-adjusted premium, excluding expenses. Nu-
 merous and diverse theories exist on the price of risk in the literatures of economics,
 finance, and actuarial science. The objective of this study is to take a unified ap-
 proach and integrate economic, financial, and actuarial pricing theories.

 There are two competing economic theories for the price of risk. The expected utility
 theory has dominated the financial and insurance economics for the past half cen-
 tury. Its influence in actuarial risk theory is evident (see Borch, 1961; Biihlmann, 1980;
 and Goovaerts et. al., 1984). Over the past decade, a dual theory of risk has been
 developed in the economic literature by Yaari (1987) and others. Based on Venter's
 (1991) observation on insurance layer prices, Wang (1995, 1996) proposed calculating
 insurance premium by transforming the decumulative distribution function, which
 turned out to coincide with Yaari's economic theory of risk.

 The first major financial pricing theory is the capital asset pricing model (CAPM).

 Shaun Wang is with SCOR Reinsurance Company, Itasca, Illinois. The author gratefully thanks
 Phelim Boyle, Stephen Mildenhall, Harry Panjer, Gary Venter, Julia Wirch, and Virginia Young
 for helpful comments.
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 16 THE JOURNAL OF RISK AND INSURANCE

 Built on Harry Markowitz's portfolio theory, CAPM was developed by William
 Sharpe, John Lintner, Jan Mossin, and others. CAPM is a set of predictions concern-
 ing equilibrium expected returns on assets. It has greatly affected our perception of
 risk and our ways of thinking when making investment decisions. However, CAPM
 has serious drawbacks when applied to insurance pricing. The CAPM assumption
 that asset returns are normally distributed is no longer valid for insurance if loss
 distributions are skewed. Another difficulty with insurance CAPM is the estimation
 errors associated with the underwriting beta (see Cummins and Harrington, 1985).

 Another centerpiece of the financial pricing paradigm is option-pricing theory. Over
 the past two decades, the financial field has witnessed tremendous growth of activi-
 ties using options and other derivatives. The wide acceptance of the Black-Scholes
 formula contributed to this financial revolution. Some researchers noted the resem-
 blance between an option and a stop-loss reinsurance cover, which called for an analo-
 gous approach to pricing insurance risks. Unfortunately, the Black-Scholes formula
 applies only to lognormal distributions, while actuaries work with a large array of
 distribution forms. Furthermore, there are significant differences between option pric-
 ing and actuarial pricing. Mildenhall (1999) provides an excellent discussion of the
 differences between these two approaches. Option-pricing methodology defines prices
 as the minimal cost of setting up a hedging portfolio, while actuarial pricing is based
 on the actuarial present value of costs and the law of large numbers. Using financial
 jargon, option pricing is done in a world of Q-measure, whereas actuarial pricing is
 done in a world of P-measure.

 In an age in which financial and insurance risks are becoming more integrated, it is
 highly desirable to have a unified pricing theory. Many researchers, including Smith
 (1986), Cummnins (1990,1991), Embrechts (1996), and others, have expressed this view-
 point. Considerable efforts have been made by actuaries and financial economists to
 connect financial and insurance pricing theories (see D'Arcy and Doherty, 1988, and
 Gerber and Shiu, 1994). Although researchers are still trying to put together various
 pieces of pricing theory puzzles, an overall picture has not yet emerged.

 In the actuarial literature on the price of risk, the proportional hazards (PH) trans-
 form is gaining the attention of actuaries. The PH-transform, as a special member of
 the general class of Wang (1996), exhibits many desirable properties, especially in
 pricing insurance layers. However, the PH-transform fails to reproduce the Black-
 Scholes formula for lognormal risks. Moreover, the PH-transform cannot be applied
 simultaneously to assets and liabilities.

 This article proposes a new distortion operator in the general class of Wang (1996).
 Unlike the PH-transform, this new distortion operator is equally applicable to assets
 and losses. For stop-loss reinsurance covers, this distortion operator resembles a risk-
 neutral valuation of financial options. This distortion operator connects four differ-
 ent approaches: (i) the traditional actuarial standard deviation loading principle, (ii)
 Yaari's economic theory of risk, (iii) CAPM, and (iv) option-pricing theory.

 The flow of this article is as follows: The "Distortion Operator and Insurance Pric-
 ing" section introduces the concept of a distortion operator within the context of
 insurance layer pricing. The "Choquet Pricing of Assets and Losses" section discusses
 the pricing of assets and losses using distortion operators. The next section intro-
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 A CLASS OF DISTORTION OPERATORS FOR PRICING FINANCIAL AND INSURANCE RISKS 1 7

 duces a new distortion operator and discusses its properties. In "The Implied a From
 Asset Prices" section, the author derives the implied distortion parameter from asset
 prices. In "The Parameter a and Systematic Risk" section, based on the capital asset
 pricing model, the author shows that the distortion parameter should correspond to
 the systematic risk. In the "Recovery of the Black-Scholes Formula" section, by ap-
 plying the new distortion operator to stock price distributions, the author recovers a
 risk-neutral valuation of options, in particular the Black-Scholes formula. The next
 section discusses the fundamental difference between a distortion operator and a
 transformed distribution. The "Measure of Downside Risk and Tail Thickness" sec-
 tion discusses some related measures of downside risk and tail thickness. The fol-
 lowing section discusses some practical issues in pricing insurance, and the final
 section gives two examples of pricing insurance using the new distortion operator.

 DISTORTION OPERATOR AND INSURANCE PRICING

 Let X be a non-negative loss random variable with cumulative distribution function

 Fx(x) = P(X < x). The decumulative distribution function, denoted by Sx(x) = 1 -
 Fx(x), has a special role in calculating insurance premiums based on the fact that

 E[X] = lo SX (y)dy.

 An insurance layer X(a, a+m] is defined by a payoff function

 0, when 0< X <a,

 X(a,a+m] = qX-a, whena < X < a+m,

 m, whena+m<X,

 where a is the attachment point (also called deductible or retention) and m is the
 limit. The decumulative distribution function for the layer X(a, a + m] is related to
 that of the underlying risk X by the following equation:

 S (Y) Sx(a + y),when 0 y <m,
 10, when m < y.

 The expected loss for the layer X(a,a+m] can be calculated by

 E[X(a,a + m]] = a SX(ma+nl(Y)dY = | Sx(X)dx.

 For a very small layer X(a, a + e], the net premium (expected loss) is Sx(a) e. This
 explains why Sx is also called the "layer net premium density." Lee (1988) gives a
 detailed account of Sx in relation to expected layer loss cost.

 Venter (1991) showed that, for any given risk, market prices by layer always imply a
 transformed distribution. Inspired by Venter's insightful observation, Wang (1996)
 suggested calculating premium by directly transforming the decumulative distribu-
 tion function:
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 18 THE JOURNAL OF RISK AND INSURANCE

 Hg[X] = Jg[Sx(x)]dx. (1)

 The function g: [0, 1] -4 [0, 1] is an increasing function with g(O) = 0 and g(l) = 1. This
 study refers to g as a distortion operator. A distortion operator transforms a probability
 distribution Sx to a new distribution g[Sx]. The mean value under the distorted dis-
 tribution, Hg[X], represents risk-adjusted premium, excluding acquisition or internal
 expenses.

 It is obvious that

 .^oo P~~~a+mt
 Hg[X(a,a + m]] = fg[SX(aa+nn](y)]dy = f g[Sx(x)]dx.

 For layer X(a,a+m] the risk-adjusted premium is the same whether (i) the layer X(a,
 a + m] is treated as a stand-alone risk and g is applied to its decumulative distribu-
 tion function SX(a,a+nl](y) or (ii) the ground-up loss distribution is transformed to
 g[Sx(x)], from which we calculate the expected loss to the layer.

 As demonstrated in Wang (1996), the desirable distortion operator for pricing insur-
 ance layers should meet the following criteria:

 * 0 < g(u) < 1, g(O) = 0, and g(l) = 1. These conditions ensure that (i) for each value
 of x, g[SX(x)] defines a valid probability and (ii) non-zero probability events will
 still have (non-)zero probability after applying the distortion operator g.

 * g(u) is an increasing function (where it exists, g'(u) 2 0). This is to ensure that
 (i) the distorted probability g[Sx(x)] defines another distribution and (ii) the risk-
 adjusted layer premium decreases as the layer increases for fixed limit.

 * g(u) is concave (where it exists, g"(u) ? 0). This is to ensure that (i) the risk load is
 non-negative for every risk or layer and (ii) the relative risk loading increases as
 the attachment point (retention) increases for a fixed limit.

 * g'(0) = +w. This is needed to ensure unbounded relative loading at extremely high
 layers. Unbounded relative loading at high reinsurance layers seems to be sup-
 ported by observed market reinsurance premiums (see Venter, 1991). Butsic (1999)
 also showed that the loss beta is unlimited at very high layers.

 Wang (1996) considered a number of elementary one-parameter functions and con-
 cluded that only the power function g(u) = Ur, (O < r < 1) satisfied all these require-
 ments. The power function corresponds to the PH-transform in Wang (1995). Wang,
 Young, and Panjer (1997) give a characterization of the PH-transform by an axiom
 regarding evaluation of compound Bernoulli risks. Although the PH-transform has
 some unique and desirable characteristics, researchers and practitioners have ex-
 pressed some concerns, enumerated as follows:

 1. The PH-transform of a lognormal distribution is no longer a lognormal distribu-
 tion. To some this is a bit of a disappointment since it does not yield an analogy to
 the Black-Scholes formula for pricing financial options.
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 2. The PH-transform has a very simple functional form. However, this simplicity

 also comes with a limitation in terms of flexibility in its shape. To some insurance
 market price observers, the PH-transform sometimes yields a relative loading that
 increases too fast at high layers.

 3. The PH-transform cannot be applied simultaneously to both assets and liabilities,

 as explained in the next section.

 CHOQUET PRICING OF ASSETS AND LOSSES

 With a broader perspective, we allow a loss variable X to be negative to include as-
 sets, and allow an asset variable A to be negative to include losses. For a consistent
 valuation, an asset A can be viewed as a negative loss X = -A and vice versa.

 For any variable X with decumulative distribution function Sx(x), (--oo < x < oo), the
 Choquet integral with respect to distortion operator g is defined by

 Hg [X] = J {g[Sx (x)] - 1} dx + Jo g[Sx (x)] dx. (2)

 Several authors, including Yaari (1987); Wang (1996); Wang, Young, and Panjer (1997);
 and Chateauneuf et al., (1996), suggested using the Choquet integral as a general
 pricing framework.

 Definition 1. For a risk X and a real-valued function h, we say that Y = h(X) is a
 derivative of X, since the payoff of Y is a function of the outcome of X. If the function
 h is nondecreasing, we say that Y is a comonotonic derivative of the underlying risk X.

 Theorem 1. When using the Choquet integral Hg to price a comonotonic derivative
 Y = h(X) of risk X, the following two methods are equivalent:

 * Distortion Method: treat Y as a stand-alone risk and apply g to Sy directly:

 Hg [Y] = J {g[Sy(y)] - l}dy + |g[Sy(y)]dy.

 * Transformation Method: first apply the distortion operator g to the distribution of

 the underlying risk X that Sx (x) = g[Sx(x)]; then evaluate the expected value of Y

 = h( X') under the transformed (ground-up) distribution Sx,.

 Theorem 1 shows that the Choquet integral H facilitates a risk-neutral valuation of
 comonotonic derivatives. A layer X(a, a + m] is a comonotonic derivative of the un-
 derlying loss variable X. Thus the Choquet integral Hg facilitates a risk-neutral valu-
 ation for insurance layers. However, the above two methods are not equivalent for
 derivatives that are not comonotonic with the underlying risk. For example, con-
 sider an insurance contract that pays the full loss if the loss is below a limit m, and
 zero payment otherwise. The payoff Y = X when X < m, and Y = 0 when X ? m. This
 contract is not a comonotonic derivative of the underlying risk. The two methods in

 Theorem 1 are not equivalent for pricing such a contract. The distortion method (with
 concave g) always produces a non-negative loading, while transforming the ground-
 up loss distribution can yield a negative loading. Such an example can be found in
 Wang and Young (1998).
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 20 THE JOURNAL OF RISK AND INSURANCE

 For the loss variable X, this article uses concave distortion operator g so that Hg [X] >
 E[X]. That is, the risk-adjusted premium is no less than the expected loss value.

 Through expressing an asset as a negative loss, it can be shown that (see Denneberg,
 1994)

 Hg 9[A] =-H 9.[A],

 where g*(u) = 1 - g(l - u) is the dual distortion operator of g.

 If g is concave, then g* is convex, and

 Hg[A] < E[A].

 That is, the price of an asset is no greater than the expected asset value.

 In most cases, a distortion operator g and its dual distortion operator g* are from
 different parametric families. The desirable properties of g might not hold when con-
 sidering g*. A family of parametric distortion operators g may exhibit desirable prop-
 erties from a loss perspective, but the same parametric family may not be appropri-
 ate from an asset perspective.

 If we apply the PH-transform g(u) = ur to insurance loss distributions, then we need

 to apply the dual distortion operator g*(u) = 1 - (1 - u)y to asset distributions. Like-
 wise, if we apply the PH-transform g(u) = Ur to assets, then we have to apply the dual
 distortion operator g*(u) = 1 - (1 - U)r to losses. Using different classes of parametric
 distortion operators for assets and losses does not promote a unified approach to
 pricing financial and insurance risks. This drawback is associated with most (but not
 all) distortion operators. Symmetric treatments of assets and liabilities are achiev-
 able, if one chooses a particular family of distortion operators g.

 A NEW DISTORTION OPERATOR

 Let '1 (x) be the standard normal cumulative distribution function with a probability
 density function

 f(x) = dD(x) 1 e-x2/2, for OO< x < oo
 dx 7

 Let x = ?D -1(u) denote the inverse function of u = 4D (x). We define a distortion opera-
 tor as follows:

 g< (u) = '[ID -1 (u) + a], (3)

 where a is a real-valued parameter. Note that g<x in equation (3) satisfies the follow-
 ing properties:

 * The limits are
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 A CLASS OF DISTORTION OPERATORS FOR PRICING FINANCIAL AND INSURANCE RISKS 21

 * The first derivative is

 dga (u) - f(x + a) - e- a2 /2 >0
 du f(x)

 * The second derivative is

 d2ga(u) _ -c(x + a)
 du2 f(X)2

 Thus, ga is concave (ga > 0) for positive a, and convex (ga > 0) for negative a.

 * For a >0,

 ga(0) = lun dga(u) = lim e-c-a2/2 = + a U-0+ du X--<

 * The dual distortion operator of ga is

 ga(U) = 1- ga(l- u)= g-a(u)

 In other words, the dual distortion operator of ga can be obtained by simply chang-
 ing the sign of ac. This property is due to the symmetry of the standard normal
 distribution around the origin.'

 Therefore, for a > 0, ga meets all necessary criteria as listed for a desirable distor-
 tion operator.

 Definition 2. For the distortion operator ga = 4[0-1(u) + a], a special notation is
 designated for the Choquet integral:

 H[X; a] = J{ga[SX(x)]- 1}dx + J ga[Sx (x)]dx. (4)

 Building on the properties for the general class in Wang (1996), the properties of
 H[X; a] are summarized as follows:

 * min[X] ? H[X; a] ' max[X].

 * H[X; a] is an increasing function of a. As a increases from -oo to +., H[X; a]
 increases from min[X] to max[X].

 * For the constant c, H[c; a] =c and H[X+ c; a] H[X; a] +c.

 * For the nonconstant variable X, H[X; a]< E[X] if a <0; H[X; a]= E[X] if a =0;
 andH[X; aoc>E[X]if a >0.

 * Forb > 0, H[bX; a] = bH[X; a].

 Note that 1 - ?(x) = D(-x)and ?D-l(1 - u) = -?-l(u). For u = ?(x), ?-l(1 - u) = -x, and g*.(u) =
 1 - 0[0,1 (1 - it) + a] = 1 - (D(-x + a) = g_ (it).
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 22 THE JOURNAL OF RISK AND INSURANCE

 * For b < 0, H[bX; a] = b H[X; - a ]. As a special case, H[-X; a] = -H[X; - a].

 * If Xi and X2 are comonotone2, then H[X,+X2; a] = H[Xl; a ] + H[X2; a ]. Two lay-
 ers of the same risk are comonotone, and thus

 H[X(a, b]; a] + H[X(b, c]; a] = H[X(a, c]; a], where a < b < c.

 * For any two variables Xi and X2, H[X,+X2; a ] < H[Xl; a ] + H[X2; a ], if a > 0; and
 H[X1+X2; a ] ? H[XI; a ] + H[X2; a ], if a < 0. These inequalities indicate the ben-
 efit of diversification, with the exception that there is no diversification between
 comonotonic risks.

 * With positive a for losses (or negative a for assets), H[X; a ] preserves the first
 and second order stochastic dominance (see Rothschild and Stiglitz, 1970).

 * For a Bernoulli (0) risk with P{X = 1} = 8, if a > O,

 lim H[X;a ] = (?) = +??
 e-*+o E[X] a

 If risk X has a Normal( Pu, a2 ) distribution with decumulative distribution function

 Sx, then Sx = g[Sx] is another normal distribution with /u' = ,u + au and a' = ac. Thus,
 H[X; a ] = E[X]+ a a [X]. This recovers the traditional standard deviation premium
 principle, where even the parameter a remains the same for both methods.3

 If risk Y with distribution S has a lognormal distribution such that ln(Y) ~ Normal( yu, a2
 then Sy, = g[Sy ] is another lognormal distribution with Wf = 4 + aa and a' = a.

 Stock prices are often modeled by lognormal distributions (so stock returns follow

 normal distributions). Results are equivalent whether distortion operator ga, is ap-
 plied to the stock price distribution or to the stock return distribution.

 The distortion operator ga can be applied to any probability distribution. Although
 there is no closed formula for ga, numerically ga is fairly easy to calculate on a
 computer. Many computer languages have both ? and $ -1 as built-in functions. For

 instance, in Microsoft Excel, t' (y) can be evaluated by NORMDIST(y, 0, 1, 1) and ?-l(y)
 can be evaluated by NORMINV(y, 0, 1).

 In modeling correlation between risks, one of the most flexible models is the normal
 copula, which involves the functions 1 and 't'-1 (see Frees and Valdez, 1998; Wang,

 1998b). By the same token, the distortion operator ga can also be a practical tool for
 calculating risk load. The distortion operator ga can be generalized to multivariate
 applications by applying ga to their joint cumulative distribution function.

 THE IMPLIED a FROM ASSET PRICES

 It is assumed that assets can be priced by applying H[X; - a ] to the present value of
 the future asset price at some moment in time. From current asset price and the fu-
 ture price distribution an implied a can be derived.

 2 There exist a variable Z and nondecreasing functions f1 and f2 such that XI = fi (Z) and
 X2=f2(Z). For a more detailed discussion on comonotone risks, see Dennenberg (1994).

 3 If X is normal, then for any distortion function g, Hg[XI reduces to the standard deviation
 principle. With the specific distortion operator ga, it happens that a is the same as the
 parameter used in the standard deviation principle.

This content downloaded from 218.107.132.55 on Wed, 11 May 2016 01:23:03 UTC
All use subject to http://about.jstor.org/terms



 A CLASS OF DISTORTION OPERATORS FOR PRICING FINANCIAL AND INSURANCE RISKS 23

 One-Period Horizon

 Assume a time horizon of one year. Consider an asset (stock) i with current price

 Af(O) and prospective ending period price A,(1). Let R.= A,(1)/A,(0) -1 denote the per
 annum return compounded annually. Assume that R, has a normal distribution with

 mean E[RJ] and standard deviation a [Ri].

 Assume that the current stock price, A,(0), can be derived by applying H[X; - a i] to
 the present value of ending period stock price, Ai(1). We have

 AO(O) = H[Ai(1) / (1 + rf);-aic| = H[Ai(0)(1 + Ri) / (1 + rf);-ai

 where rf is the per annum risk-free rate compounded annually.

 As a result, the risk-adjusted rate of return for stock i must be the same as the risk-
 free rate:

 H[Ri;-ai] = E[Ri] - aic[Ri] =rf

 which implies that

 a= E[Ri- rf (5)
 a[Ri]

 Note that an asset i can also refer to an asset portfolio. For the market portfolio, M,
 the risk-adjusted rate of return must equal the risk-free rate:

 rf = H[RM;-aCM] = E[RM] -amO[RM]'

 which implies that

 E[RMI -rf
 aM = -IM

 The right-hand side of the above equation is also called the market price of risk (see
 Cummins, 1990, p. 135).

 A Multi-Period Horizon

 Now the time horizon is extended from 1-period to T-period. Without loss of gener-

 ality, assume that the current time is t = 0. For an asset (stock) i, let Rit, t = 1, 2, . . . IT

 denote the per annum return compounded annually in the time period i. Let A,(t) be
 the price of stock i at time t. We have for t = 1, 2,.. . .T,

 Rit = InAi (t) - InAi (t - 1).

 In financial economics, it is commonly assumed that Rit and Ri5 are independent for
 different time periods t and s. For simplicity, assume that Rit has constant mean and
 standard deviation in all time periods; that is, E[Rit] = E[Ri] and a [RJ = a [RJ], for t =
 1, 2,. .. , T.
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 24 THE JOURNAL OF RISK AND INSURANCE

 Let Rit denote the total T-period return for stock i (without compounding). Therefore,

 T T

 Ri (T) = In Ai (T) - InAi (O) = X, {nAi (t) - lnAi (t - 1)} = , Rit
 t=1 t=1

 with

 T

 E[Ri (T)] = E E[Rit] = T E[Ri
 t=1

 and

 T

 Var[Ri(T)] = , {[Rit]2 = T {[RiR]}2.
 t=1

 The total T-period return R,(T) for stock i has mean = T.E[R1] and standard deviation =

 T 12 ca[Ri]. Assuming that for some a, the risk-adjusted rate of return for stock i,

 H[Ri (T); -aix] equals the total T-period risk-free rate, T.rf, producing

 T E[Ri] - aiV-Ta[Ri] = T rf,

 and thus

 oc = ciX-E[R,] (6)

 The implied parameter a i increases as the time horizon T increases; more precisely,
 a i is proportional to the square root of T.

 Note that one can progressively refine the 1-period from one year to one quarter, one
 month, one day, and so on, while keeping the T-period fixed at one year. By progres-
 sively refining the time periods, one eventually approaches a geometric Brownian
 motion model for the asset price movement. In a geometric Brownian motion model,

 however, there is a need to re-interpret R, as an instantaneous rate of return com-
 pounded continuously.

 Continuous Time Asset Price Model

 In a continuous time model, stock prices are assumed to follow a geometric Brown-

 ian motion (GBM). Consider a stock (or stock index) i. The stock price AP(t) satisfies
 the following stochastic differential equation:

 dA(t) -=idt + aidWi
 Ai (t) 1 7

 where dW. is a random variable drawn from a normal distribution with mean equal

 to zero and variance equal to dt. In equation (7), pi is called the expected rate of
 return for the stock, and a, is called the volatility of the stock return. Let Ai(O) be the
 current stock price at time zero. For any future time T, the prospective stock price
 Ai(T) as defined in equation (7) has a lognormal distribution (see Hull, 1997, p. 229):
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 InAi (T) - InAi (0) ~ Normal[(Pi - 0.5C2 )T, 2 T]* (8)

 Next we apply the pricing formula H[X; -aJ] to the present value of future stock
 price AifT).

 For any fixed future time T, no arbitrage condition (or simply, market value concept)
 implies that the risk-adjusted present value of future stock price must equal the cur-
 rent stock price. Therefore,

 Ai (0) = H[e-rTAi(T); -a-] = e-TH[Ai (T); -a] (9)

 where rc is the risk-free rate compounded continuously.

 Now equation (9) is rewritten as

 Ai(O) = e-rcTE[Bi(T)],

 where Bi(T) is drawn from a distorted distribution

 SBi(T)(Y) = g-aJSAi(T)(Y)I

 with B,(O) = Af(O). It can be verified that

 In Bi (T) - ln Bi(O) - Normal [(i, - O.5a )T - aaivu 1,oT] (10)

 The no-arbitrage condition in equation (9) implies that

 which in turn implies that

 a H rc)-J (11)
 aj

 The implied ai in Equation (11) coincides with the market price of risk of asset i as
 defined in Hull (1997, p. 290). It is a continuous analog of the implied ai in equation
 (6) under a discrete model. With the ai in equation (11), g-ai transforms the asset
 price distribution SAi(T) to a distorted distribution SBi(T) with

 In Bi (T) - In Bi (0) Normal[(rc - 0.5a )T, a2T] (12)

 where both the distortion parameter ai and the expected stock return ,ui dropped

 out from the distorted distribution SBi(T) -

 THE PARAMETER a AND SYSTEMATIC RISK

 In the previous section, the author derived some implied a from asset prices. This
 section revisits the capital asset pricing model and establishes that the parameter a
 should correspond to the systematic risk of X with respect to the aggregate risk port-
 folio.

 From a risk portfolio perspective, only systematic risk should be priced; this prin-
 ciple underlies the CAPM. In order to clarify the meaning of systematic risk, we need
 to specify the aggregate risk portfolio. In the stock market, systematic risk for a stock
 refers to its correlation with the market portfolio (a broad stock index). In the insur-
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 ance market, systematic risk for a loss variable may refer to its correlation with the
 insurance industry aggregate loss. As pointed out by Gary Venter, given the same
 loss distribution, a Florida catastrophe cover is more risky than other types of insur-
 ance contracts, simply because Florida catastrophe losses are highly correlated with
 industry aggregate losses. The above observations suggest that, when applying the

 pricing formula H[X; - ai], the parameter a should correspond to the systematic risk of X.

 CAPM assumes that all investors have the same one-period horizon, and asset re-
 turns have multivariate normal distributions. Let RM and a [RM] be the return and
 standard deviation of return for the market portfolio M. The CAPM assets that

 E[Ri] =rf + 3i {E[RM -rf

 where

 Cov[Ri, RM]

 {4[RM ]}2

 is the beta of stock i.

 The CAPM equation can be restated in a different form:

 E_R___ Pi_ rE[R13-
 -[Ri ] 'PM a[RMI J (13)

 where

 _ Cov[Ri, RM]
 P [Ri ] I[RM]

 is the correlation coefficient between Ri and RM.

 Equations (13) and (5) show the following relationship between the implied ai for
 stock i and the implied aM for the market portfolio:

 a(i =piMm am. (14)

 In other words, the implied ai corresponds to the systematic risk of asset i (or its
 correlation with the market portfolio).

 Equations (13) and (14) also have the following relationship in terms of beta and the
 market risk premium:

 ai a[i] =pi = (am a[RM ]}.

 Recall that the time horizon can be extended from 1-period to T-period. Let Rmt, t = 1,
 2, .. . ,T, be the return for the market portfolio M in time period t. Assume that for t =

 1, 2,.. ,T there is a constant correlation coefficient between Ri, and RMt:

 Pi,m = Cov[Rit, RMtI
 a[Rt] R c[RMt]
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 It can be verified that

 Cov[Ri (T), RM (T)] = Pi,M a[Ri (T)] a[RM (T)],

 and the relation ai = Pi,MaM still holds for the T-period time horizon.

 Recall that one can progressively refine the length of one period while keeping the T-
 period fixed. This refining process will eventually converge to a special case of the
 intertemporal, continuous time CAPM (ICAPM) of Merton (1973), where assets re-
 turns are described by geometric Brownian motions and correlations between assets
 are described instantaneously. More specifically, it is assumed that (i) the price move-
 ment of individual asset i can be described by the stochastic differential equation (7)

 and (ii) at each moment in time, the dWi's for individual assets follow a multivariate
 normal distribution. Under these assumptions, the price movement of the market

 portfolio (a broad stock index) can be described by

 dAM(t) = dt + ca dWm,
 Am (t) P

 with P,M = Cov[dWK, dWM] being a constant over time. In this continuous time frame-
 work, the relation ai = PiM aM also holds for any time horizon T.

 CAPM assumes that asset returns have multivariate normal distributions. This is a
 reasonable assumption for asset returns. But it can be unrealistic for insurance appli-
 cations in which loss distributions are highly skewed. Nevertheless, the general prin-

 ciple of CAPM still applies in insurance applications. Now we use H[X; a I to extend
 CAPM to variables having other than normal distributions.

 Note that any random variable can be transformed to a normal variable. For any

 variable, X, FX(X) has a uniform distribution and -1 [FX(X)] has a standard normal
 distribution.

 Consider an aggregate risk portfolio

 (xi, X2 *** Xd}'

 where k is very large. The author denotes

 Z = Xi + X2+ + Xk

 as the aggregate risk. Assume that the transformed variables

 T-1 [FX (1),4-1 [FX (X )] * , 4>1[FXk (XJ )]

 have a multivariate normal distribution. For any risk X,

 PX,Z = Cov[4(Y-[Fx(X)],41-1[Fz(Z)]j (15)

 is a measure of the systematic risk of X. The correlation measure P x z in (15) is similar
 to the concept of rank-order correlation (see Frees and Valdez, 1998; Wang, 1998b),
 and it recovers the traditional correlation coefficient for normally distributed vari-
 ables.
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 As a generalization of CAPM, when we put forth a general pricing formula H[X; ax]
 with ax = Pxz a z reflecting the systematic risk of X, we get an additive pricing
 formula for pricing individual risks. However, for skewed distributions, risk diversi-
 fication by pooling individual risks may not be as effective as in the case of normal
 distributions. For finite insurance risk portfolios, the parameter ax is likely to be
 higher than indicated by Px'Z az to reflect the residual process risk. Other important
 factors that need to be considered when selecting a include (i) parameter uncer-
 tainty in the estimated loss distributions, (ii) anti-selection among insurer buyers,4
 and (iii) the cost of capital commitment. With the presence of parameter uncertainty,
 a higher ax may be justifiable to reflect market friction and incomplete information.

 Lastly we consider the pricing of comonotonic derivatives for an underlying risk X.
 For an increasing functionf, Y =f(X) has the same level of systematic risk as X; that is
 P YZ = P X Therefore, a = a y, and the same a should be used in pricing X and its
 comonotone derivative Y. For the pricing formula H[X; a X] with ax reflecting the
 systematic risk of X, the result in Theorem 1 still holds true for risk-neutral valuation
 of the comonotonic derivatives of X.

 RECOVERY OF THE BLACK-SCHOLES FoRMuLA

 A European call option on the underlying stock (or stock index) i with a strike price
 K and exercise date T is defined by the following payoff function

 Call(K) = f ( , when A (T) ? K,
 1Ai (T) - K,when Ai (T) > K.

 The expected payoff for this option can be calculated as

 E[Call(K)] = JSCall(K)(x)dx = JSA,(T)(y)dy.

 Being a nondecreasing function of the underlying stock price, the option payoff,

 Call(K), is comonotone with the terminal stock price, A,(T); thus it has the same level
 of systematic risk as the underlying stock i. Therefore, the same a as in equation (11)
 should be used to price the option Call(K), and

 H[Call(K); -a] = |-a [SCall(K) (x)] dx= 1K SB(T) (y)dy.

 In other words, the price of a European call option is the expected payoff under the

 distorted (risk-neutral) stock price distribution SBi(T), where the expected stock return
 Au is replaced by the risk-free rate rc. This option price is exactly the same as the
 Black-Scholes formula.

 There is an analogy between (i) an unlimited stop-loss cover with retention K, and
 (ii) a European call option with strike price K. Both are comonotone derivatives of
 the underlying (loss or asset) variable. By applying the pricing formula H[X; a I to
 the stop-loss variable, we get a stop-loss premium that is the expected stop-loss value
 under a distorted ground-up loss distribution. Likewise, the price for a European call
 option can be evaluated as the expected option payoff under the distorted (risk-neu-

 4As an example, relative to the average population, the mortality rates deviate differently
 among life annuity buyers as opposed to life insurance buyers.
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 tral) distribution for the underlying stock price, where the expected stock return pi does
 not appear in the option pricing model. Using H[X; a ] adds a new perspective to
 the well-known risk-neutral valuation methodology of options (see Cox and Ross, 1976).

 Several researchers, including Smith (1977) and Doherty and Garven (1986), pro-
 posed using an option-pricing model to price insurance contracts. Cummins (1988)
 applied the Black-Scholes formula to insurance guaranty fund premium. However,
 as a major limitation of the Black-Scholes formula in insurance applications, the op-
 tion pricing models are not applicable for the full range of distributions used by
 actuaries to describe prospective losses. D'Arcy and Doherty (1988, pp. 63-64) made
 the following comment on the option-pricing model:

 The distribution assumptions required to use option pricing are quite spe-
 cific, either normality or lognormality. These distributions may provide
 reasonable approximations when the underlying variable is a diversified
 portfolio of financial assets or policy liabilities. In this chapter we were
 careful to use options models that met this criterion. But consider a rein-

 surance policy written on a single direct policy. The reinsurance payoffs
 may well have the characteristics of an option. However, it would be fool-
 hardy to use this feature as sufficient justification for pricing the reinsur-
 ance contract with an option-pricing model. If the payout on the direct
 policy cannot be reasonably approximated by a lognormal or normal dis-
 tribution, this approach could be seriously in error.

 While the Black-Scholes formula relies on the lognormal distribution assumption,5
 the pricing formula H[X; a ] can be applied to any loss distributions.

 As a final note, this section revisits equation (11), where the implied a increases as

 the time horizon lengthens. The pricing formula H[A,(T); - a ] with a in (11) reveals
 the intimate connection between Merton's intertemporal, continuous time CAPM
 and the option pricing theory. This interesting result may have applications in pric-
 ing long-tailed insurance when losses are not reported or settled until many years

 after the policy period expires. If the development of emerged losses can be mod-
 eled by geometric Brownian motions, the parameter a would be proportional to the
 square root of the time period from policy inception to the date of loss settlement.
 From another perspective, for long-tailed insurance risks, parameter a reflects both
 the magnitude and duration of capital commitment. The relationship (11) between
 a and duration T may be useful in calculating market values for insurance liabilities
 (including loss reserve discounting).

 RELATION WITH TRANSFORMED DISTRIBUTIONS

 A distortion operator g is fundamentally different from a transformed distribution

 Y = h(X). Although every increasing transform Y = h(X) can be written in the form

 Sy (x) = g[Sx(x)] with

 g(u) = Sx(h- (S-1(u)))

 I Strictly speaking, this is not an accurate statement. The Black-Scholes approach can be applied
 to stochastic processes other than geometric Brownian motion; for example, see Gerber and
 Shiu (1994).
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 the implied g depends on the underlying distribution SX. When applied to a different
 distribution Sx, we get a different implied g.

 Buhlmann (1980) proposed a premium loading method by the Esscher transform:

 *()=e mf(x)
 f()E[ea I]

 The Esscher transform of a Normal(y, cM2) distribution yields Normal( 4u + aa2, a2C).
 Gerber and Shiu (1994) applied the Esscher transform to the logarithm of X, which
 can reproduce the Black-Scholes option pricing formula. Venter (1998) suggested using
 the log-Esscher transform as an alternative to the PH-transform for lognormal risks.
 However, neither the Esscher nor the log-Esscher transform corresponds to a fixed
 distortion operator.

 Like Venter (1998), Butsic (1999) came close to conceptualizing the distortion opera-
 tor ga in equation (3). Butsic suggested a generalized PH-transform by defining

 Sy(x) = [Sx(x)]"(x),with 0 < q(x) < 1. (16)
 He considered the implied q(x) by shifting the lognormal location parameter. He
 also considered a fractional PH-transform

 qx

 Sy(x) = [Sx(x)] with 0 < m. (17)

 Note that neither formula (16) nor (17) corresponds to a distortion operator, since the
 implied distortion

 g(u) = uq[Sx (u)]

 relies on the underlying risk distribution SX. If we replace the underlying risk distri-
 bution Sx by Sx, then formula (16) may imply a different distortion. The same com-
 ments apply to formula (17).

 As a further clarification, a transformation of variable Z'= h(Z) can induce a distor-
 tion:

 g(u) = S h lS(u)]

 provided that Z and h(.) are kept fixed and not varying with the underlying risk
 distribution Sx to which g is applied. For instance, consider a simple scale transform
 Z' = pZ with 0 < p < oo. It can be verified that

 * if Z has an exponential distribution, then the induced distortion g(u) = ul1P gives
 the PH-transform;

 * if Z has a lognormal distribution with ln(Z) - Normal(0, 1), then the induced dis-

 tortion g(u) = 4[4-1(u) + ln(p)] is the same as ga in equation (3) with a = ln( p).

 * if Z has a gamma distribution, then the induced distortion operator preserves
 gamma distributions;
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 * if Z has a Pareto distribution with Sz(z) = (1 + z) -', then the induced distortion is

 g(u) = [1 + (u- 1) / p] . Venter (1998) discussed such a distortion function.

 MEASURE OF DOWNSIDE RISK AND TAIL THICKNESS

 In managing financial and insurance risks, we often need a measure of downside

 risk. A good measure of downside risk is essential in solvency measurement, risk-
 based-capital requirement, value-at-risk calculation, and dynamic financial analysis.

 The distortion operator gX can also be used as a general risk measure.

 Butsic (1994) advocated the use of expected policyholder deficit (EPD) as a measure

 of downside risk potential. He used a constant EPD ratio (to the expected loss) in
 deciding risk-based capital requirements. In his recent paper, Butsic (1999) suggested
 that the EPD should be calculated with respect to a risk-adjusted distribution. The
 distortion operator g<x can be used to transform any underlying distribution to a
 risk-adjusted distribution, from which a risk-adjusted EPD can be calculated.

 Artzner et al. (1998) (also see Artzner, 1999) proposed a set of rules for a coherent risk

 measure, which in general would lead to a distortion operator. As a variation of the
 EDP concept, Artzner and his co-authors advocated a risk measure based on the

 expected deficit in excess of a prescribed (say, lOOplh) percentile, which corresponds
 to a distortion operator:

 u, O< u < 1.

 We can modify their risk measure by using the following composite distortion
 operator:

 g(u) = {ga(u), O?u <p.
 ga (P) p < u < 1,

 where g<,, is defined in (3). For lognormal risks, with an appropriate value of a, this
 modified risk measure corresponds to the price of an option with a strike price equal
 to the 100 pth percentile value.

 Other measures of deviation can be defined utilizing the entire distribution, reflect-
 ing both upside and downside potentials. Wang (1998a) used the PH-transform (r =
 0.5) to define a right-tail deviation. As an alternative, H[X; a ] can be used to define
 measures of variability. We define a right-tail deviation and a left-tail deviation,
 respectively, as follows

 RDa[X] = {H[X; a] - E[X]} / a

 LDa [XI = {E[X] - H[X;-a]} / a,

 for some positive a (say, a = 0.1).

 For a normal distribution Normal( ,u, a2 ), we have RD,a [X] = LD a [X] = Ca.
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 In a financial modeling, empirical asset return data sometimes indicate a two-sided
 distribution, which has thicker tails than a normal distribution. Without referring to
 higher moments, we can define an index for the tail thickness relative to a normal
 tail. For an asset return variable X, we define a right-tail index and a left-tail index
 by

 RTIa [XI = RD2a [XI / RDa [X],

 LTIa[X] = LD2a[X] / LDa[X],

 for some positive a (say a = 0.1).

 For a normal distribution, RTI a [X] = LTI a [X] = 1, since the tail deviations do not

 vary with a. A tail index greater than one indicates that the tail is heavier than a
 normal tail.

 SOME PRACTnCAL ISSUES IN PRICING INSURANCE

 A prerequisite for using the pricing formula H[X; a ] is to have an estimated loss
 distribution for the underlying risk. The monograph by Klugman, Panjer, and Willmot
 (1998) serves as an excellent source for modeling loss distributions. However, there
 remain a number of judgment issues related to modeling loss distributions. It is
 often desirable to explicitly reflect parameter uncertainty regarding frequency and
 severity in the estimated loss distribution. By modeling parameter uncertainty, one
 may incorporate knowledge or judgment beyond the underlying data. For a fixed
 a, the pricing formula H[X; a ] automatically picks up an extra loading for param-
 eter uncertainty.

 In addition to frequency and severity risk, another source of uncertainty is timing
 risk. With prolonged duration of loss reporting and loss payments, both the invest-
 ment income and the cost of capital commitment increase. Equation (11) may be
 useful in quantifying this intricate relationship.

 The pricing formula H[X; a I can be applied in a number of ways, depending on the
 circumstances. In pricing an excess layer, one can apply H[X; a I to the severity dis-
 tribution to derive a relativity in risk loading by layer. This approach is fairly handy,
 given that industry-wide severity curves for many lines of insurance are readily avail-
 able from the Insurance Services Office (ISO) and the National Council on Compen-
 sation Insurance (NCCI). When pricing aggregate stop-loss contracts, one can apply
 H[X; a l to the aggregate loss distributions.

 Undoubtedly the selection of a is crucial in any implementation of the pricing for-
 mula H[X; a]. While CAPM suggests that the parameter a reflects the level of
 systematic risk, in insurance applications one should not estimate a based solely on
 statistical regressions using historical data. An alternative method for estimating the
 systematic risk is by employing a risk factor analysis. Such an analysis first identi-
 fies a number of key factors that influence industry aggregate losses. Examples of
 such key factors include conceivable major natural catastrophes, possible dramatic
 changes in court rulings, unexpected claim cost inflation, and sudden changes in the
 interest rate yield curve. The systematic risk of X can then be estimated by evaluat-
 ing the sensitivity of X to these key factors. When selecting a, one should also take
 into consideration (i) parameter uncertainty in the estimated loss distribution,
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 (ii) anti-selection and moral hazards by insurance buyers, (iii) the cost of capital com-

 mitment, and (iv) competitiveness of the market.

 EXAMPLES

 Two numerical examples are presented in this section.

 Example 1. Consider a ground-up liability risk X with a Pareto severity distribution

 ( 2000 1.2
 SX(x) = ( ? ,for x > 0.

 k2000 + x}

 To compare risk loading by layer, assume that the ground-up frequency is exactly

 one claim, and then apply the pricing formula H[X; a ] to the severity distribution.
 For numerical illustration, choose a loading parameter a = 0.1. If the loss is capped

 by a basic limit of $50,000, the expected loss is $4,793 and the risk-adjusted premium
 is $5,487, implying a 14.5 percent loading. As shown in Table 1, the relative loading
 increases at higher layers.

 A comparison can be made with the PH-transform loading method. A PH index r =
 0.9245 is selected to yield the same relative loading (14.5 percent) for the basic limit
 layer ($0, $50,000). Table 1 shows that the PH-transform method produces a risk

 loading that increases much faster than using distortion g<,.

 TABLE 1

 Risk Load 6y Layer Under Distortion g, and PH-transform

 Layer Expected PH Relative HE[X; a I Relative
 in 000's Loss Premium Loading % Premium Loading %

 (0, 50] 4,793 5,487 14.5 5,487 14.5

 (50, 100] 657 910 38.4 845 28.6

 (100, 200] 582 857 47.2 769 32.2

 (200, 300] 307 475 54.7 414 34.9

 (300, 400] 204 325 59.6 278 36.6

 (400, 500] 150 246 63.3 207 37.8

 (500, 1000] 428 728 70.1 598 39.9

 (1000, 2000] 373 675 81.1 533 43.0

 (2000, 5000] 420 819 94.7 616 46.5

 (5000, 10000] 271 567 109.5 406 49.9

 Example 2. Consider a hypothetical example of a satellite launching. Suppose that

 the estimated loss distribution for a commercial satellite launching is a Bernoulli
 type, with 5 percent probability of a total loss at $100 million. This risk is shared by
 a number of (re)insurers worldwide. The satellite launching loss distribution is

 00.05, 0< x<100
 Sx(X)=04 n 0 < X.
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 Using the distortion operator ga in equation (3) with a = 0.1,

 g. IS,, (X) (0.05) = 0.0612, 0 < x < 100 g~~[Sx(x)I - ~ 0, 100?<x.

 This implies a risk-adjusted premium (excluding expenses) of $6.12 million, or a 22.4
 percent loading. The large size of risk may indicate a higher systematic risk (due to
 higher risk concentration combined with a relatively small statistical sample for esti-
 mation). Thus a higher a may be needed for pricing this risk. If a = 0.15 is used, the
 result is a risk-adjusted premium of $6.75 million, or a 35.0 percent loading (exclud-
 ing expenses).

 CONCLUSION

 The actuarial literature has witnessed several decades of searching for a sound pric-
 ing formula. This long search has been disjointed and along different paths. The new
 pricing formula H[X; a I is like a piece of connecting puzzle that ties together four
 different approaches: (i) the traditional standard deviation principle, (ii) Yaari's eco-
 nomic theory of risk, (iii) the capital asset pricing model, and (iv) option pricing theory.

 Unlike other distortion operators in Wang (1996), the pricing formula H[X; a I offers
 a symmetric treatment of assets and losses, connects the CAPM, and recovers the
 Black-Scholes formula for option prices. It promotes a unified approach to pricing
 financial and insurance risks. The pricing formula H[X; a I has potential applica-
 tions not only in increased limits ratemaking and reinsurance layer pricing, but also
 in pricing financial risks such as bond defaults and securitization deals.

 With great promise in theoretical development and practical application, more re-
 search is needed to further explore the properties of this pricing formula.
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