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 Systemic Risk in Financial Systems
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 W A Te consider default by firms that are part of a single clearing mechanism. The obliga-

 tions of all firms within the system are determined simultaneously in a fashion con-

 sistent with the priority of debt claims and the limited liability of equity. We first show, via

 a fixed-point argument, that there always exists a "clearing payment vector" that clears the

 obligations of the members of the clearing system; under mild regularity conditions, this

 clearing vector is unique. Next, we develop an algorithm that both clears the financial system

 in a computationally efficient fashion and provides information on the systemic risk faced

 by the individual system firms. Finally, we produce qualitative comparative statics for finan-

 cial systems. These comparative statics imply that, in contrast to single-firm results, even

 unsystematic, nondissipative shocks to the system will lower the total value of the system

 and may lower the value of the equity of some of the individual system firms.

 (Credit Risk; Default; Clearing Systems)

 1. Introduction
 One of the most pervasive aspects of the contem-

 porary financial environment is the rich network of

 interconnections among firms. Although financial lia-

 bilities owed by one firm to another are usually mod-

 eled as unidirectional obligations dependent only on

 the financial health of the issuing firm, in reality, the

 liability structure of corporate obligations is invariably

 much more intricate. The value of most firms is depen-

 dent on the payoffs they receive from their claims on

 other firms. The value of these claims depends, in

 turn, on the financial health of yet other firms in the

 system. Moreover, linkages between firms can be cycli-
 cal. A default by Firm A on its obligations to Firm B

 may lead B to default on its obligations to C. A default

 by C may, in turn, have a feedback effect on A. This

 example illustrates a general feature of financial sys-

 tem architectures, which we term cyclical interdepen-

 dence. In this paper, we consider the problem of finding

 a clearing mechanism in cases in which this sort of

 cyclical interdependence is present.

 All markets have some kind of clearing mecha-

 nism. Perhaps clearing mechanisms of interbank pay-

 ments and for listed exchanges have received the most

 attention. In the United States, for example, CHIPS

 and Fedwire are the main banking clearing mech-

 anisms; in Germany, the Abrechnung and the EAF

 (Elektronische Ai rechnung mit Filetransfer) performs

 this function. Regarding clearing mechanisms, one of

 the attractions of trading on a listed options exchange,

 the CBOE, for example, is that the Options Clear-

 ing Corporation is the counterparty to every trade.

 Hence, credit considerations do not prohibit lower-

 credit traders from participating in these markets.

 These payment systems are forced to confront large

 defaults on a regular basis. Examples of such defaults

 include the failure of I.D. Herstatt in 1974 and the Bank

 of New York overnight shortfall of $22.6 billion in

 1985. Systemwide meltdowns also occur. For example,

 consider the collapse of the Tokyo real estate market,

 the bankruptcy and public bailout of American S&Ls

 to the cost of about $500 billion, the Venezuelan bank

 crisis of 1994, and the Long Term Capital bailout

 associated with the Russia's sovereign debt default.

 One of the most interesting failures of a tightly inter-

 connected clearing system was the 1982 collapse of
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 the al-Manakh stock market in Kuwait. The clearing

 system, consisting of approximately 29,000 postdated

 checks written by traders, collapsed after a 45% drop

 in market values. The nominal gross liabilities of the

 participants in the market to each other at the time of

 the collapse was more than four times Kuwait's gross

 domestic product (Elimam et al. 1997).

 Surprisingly, despite the obvious importance of the

 "architecture of financial linkages" for determining

 the return-generating process for financial assets, little

 has been written on cyclical financial interconnections.

 The effects of bilateral clearing of offsetting nominal

 obligations has been thoroughly analyzed in Duffie

 and Huang (1996). Rochet and Tirole (1996) analyzed

 the incentive and monitoring impact of an interbank

 loan. From a more empirical perspective, Angelini

 et al. (1996) develop an empirical model of intercor-

 porate defaults. In this model, the probability that a

 default by one firm triggers another firm's default is

 exogenously specified without modeling intercorpo-

 rate cash flows. Eliam et al. (1997) report the actual

 procedure used to clear intercorporate debts after the

 Kuwaiti shock market crash. However, to our knowl-

 edge, this paper is the first to analyze, in a general

 fashion, the properties of intercorporate cash flows in

 financial systems featuring cyclical interdependence

 and endogenously determined clearing vectors.

 This lack of attention to cyclical interdependence

 is even more surprising given the extensive litera-

 ture modeling default in a simple unidirectional and

 bilateral context. In fact, the whole literature on term

 structure of interest rates ignores the considerations

 mentioned above. While modeling the valuation of a

 firm's debt as independent from that of other firms

 simplifies debt and equity models, this assumption

 becomes questionable in portfolio management, cor-

 porate bond trading, and the analysis of counterparty

 credit risk. A desideratum for addressing these issues

 is the development of a simple, tractable model for

 computing clearing vectors for interlinked financial

 systems. The aim of this paper is to provide such a

 model.

 We develop a fairly general model of a clearing

 system. The model satisfies the standard conditions

 imposed by bankruptcy law, that is, clearing vectors-

 which represent the vector of payments from nodes

 in the financial system to other nodes-satisfy the

 conditions of proportional repayments of liabilities in

 default, limited liability of equity, and absolute pri-

 ority of debt over equity. We shall show, via a fixed-

 point argument, that clearing vectors always exist.

 Moreover, under mild regularity conditions, there is

 a unique clearing vector. This clearing vector can be

 computed through a "fictitious sequential default"

 algorithm. Moreover, the algorithm corresponds to a

 process of dynamic adjustment in which the set of

 defaulting firms at the start of each round is fixed by

 the adjustments of the system in the previous round.

 In each new round, an attempt is made to clear the

 system assuming that only nodes that defaulted in the

 last round default. If, in fact, no new defaults occur,

 the algorithm terminates. Otherwise, the new wave of

 defaults is recorded and the process is iterated again.

 This algorithm, as well as quickly yielding the clearing

 vector, produces a natural measure of systemic risk-

 the exposure of a given node in the system to defaults

 by other firms. This measure of systemic risk is based

 on how many "waves" of defaults are required to

 induce a given firm in the system to fail.

 After analyzing the clearing vector, we perform

 comparative statics on the clearing payment vector,

 determining the nature of its dependence on the vector

 of operating cash flows as well as on the architecture of

 financial liabilities linking the various members of the

 system. More specifically, we show that the clearing

 payment vector is a multidimensional concave func-

 tion of operating cash flows and the level of nominal

 payments, and that the value of equity is not generally

 convex in operating cash flows. These results imply

 that the total value of firms in the system is concave

 in operating cash flows. Standard results on stochastic

 dominance imply that the expectation of concave func-

 tion or a random variable is lowered by increases in

 risk. Thus, our results imply, assuming standard risk-

 neutral valuation, that increased volatility, by lower-

 ing the value of interfirm payments, will lower the

 total value (debt plus equity) of nodes in the system.

 This result obtains even though there are no costs to

 insolvency in our model in the sense that total equity

 value is conserved. For this reason, our results sug-

 gest that using changes in total asset values to measure

 the effect of an economic shock on a group of tightly
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 interconnected companies (e.g., Japanese banks) can

 be highly misleading.

 The paper is organized as follows. In ?2, we present

 the model and develop the basic machinery, including

 existence-uniqueness results. In ?3, we present the two

 characterizations of the clearing vectors and exam-

 ine their consequences. In ?4, we derive comparative

 statics of the clearing system. Section 5 concludes the

 paper and considers some extensions.

 2. Framework and Basic Results

 2.1. Preliminaries

 The subsequent analysis utilizes a number of stan-

 dard definitions from matrix algebra and basic lat-

 tice theory. The definitions are standard. To reduce

 confusion and make referencing easier, we collect

 these definitions together in this section. Let 9'1" rep-
 resent n-dimensional Euclidean vector space. Let JN =

 (1, 2, ... , n}. For any two vectors, x, y E 91", define the

 lattice operations

 XAY := (min[xl,yl], min[X2,Y2] ... min [x, I yi, DI

 x v y (max[x1, Yi], max[x2, Y2]... max[x,,, yD]),

 x+ :=(max[xl, 0], max[x2, 0] ... max[x,,, 0]).

 Let 1 represent an n-dimensional vector, all of whose

 components equal 1, i.e., 1 = (1, ... , 1). Similarly, let 0

 represent an n-dimensional vector, all of whose com-

 ponents equal 0. Let 11 11 denote the ?1-norm on .91".
 That is, for each x E gin let

 1i

 llxll :=E xil.
 i=l

 Let I III be the operator matrix Norm associated with
 ; that is, for each n x n matrix, define

 IllMill -SupI1Mx11.
 || 11|<1

 An important definition for our future analysis is of

 a nonexpansive map. A map T: 9? -+ 90i is (e1)-
 nonexpansive if, Vx E 9V,

 11 T(x)-T(y) 11 < lx-y 11.

 Whenever an ordering of elements of 9)V is specified in

 the sequel, the ordering refers to the pointwise order-

 ing induced by the lattice operations, i.e.,

 x< y xi Yi for all i E.N.

 2.2. Economic Framework

 Consider an economy populated by n nodes. Each of

 these nodes is to be thought of as a distinct economic

 entity, or financial node, participating in the clearing

 network. Each such entity may have nominal liabilities

 to other entities in the system. These nominal liabilities

 represent the promised payments due to other nodes

 in the system. We represent this structure of liabili-

 ties with the n x n nominal liabilities matrix L, where Lii
 represents the nominal liability of node i to node j.
 As the notion of nominal claims seems to imply, we

 assume that all nominal claims are nonnegative and

 that no node has a nominal claim against itself. To

 reflect this economic interpretation, we specify that the

 nominal liabilities matrix is nonnegative and that all

 of the diagonal elements of the matrix equal 0; that is,

 we assume that Vi, j EJ\f, Li0 > O and that Vi, Lij = 0. Let
 ei > 0 be the exogenous operating cashflow received by
 node i. This operating cash flow is the cash infusion

 to the node from sources outside the financial system.

 A financial system is thus a pair (L, e) consisting of a
 nominal obligations matrix L and an operating cash

 flow vector e, satisfying the conditions given above.

 Note that the condition that operating cash flow is

 nonnegative is not really restrictive. It might appear

 that operating cash flows could be negative because

 of operating costs. However, operating costs are not

 negative cash infusions; rather, operating costs are the

 sum of all liabilities of the firm to outside factors of

 production: workers, suppliers, and so forth. A firfm
 that has costs in excess of its revenues does not have a

 negative cash balance; rather, it has positive operating

 cash inflows and liabilities to workers and suppliers

 that exceed those positive operating cash flows. Those

 operating costs could be captured by appending to the

 financial system a "sink node," labeled, say, node 0.

 We could assume that this sink node has no operating

 cash flow of its own, i.e., eo = 0, nor obligations to other

 nodes, i.e., Loj = 0, Vj; the "operating cost" of node i,
 in this framework, would be the liabilities of node i to

 238 MANAGEMENT SCIENCE/Vol. 47, No. 2, February 2001
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 the sink node 0, i.e., Lio. Because nothing in our setup
 precludes a node with the characteristics of the sink

 node, the assumption of nonnegative operating cash

 flows is made without a loss of generality.

 Let pi represent the total dollar payment by node i to

 the other nodes in the system. Let p = (PlI P2, ... , Pt)
 represent the vector of total payments made by the

 nodes. Let Pi represent total nominal obligation of i to
 all other nodes, that is,

 Pi =Lij.(1
 j=l

 Let p = (IP P2, . P. , ,l) represent the associated vec-
 tor, which we term the total obligation vector. This vec-

 tor represents the payment level required for complete

 satisfaction of all contractual liabilities by all nodes.

 Let

 iL if > ?(
 1 _ _ Pi (2

 ' 0 otherwise(2

 and let II represent the corresponding matrix, which

 we term the relative liabilities matrix. This matrix cap-

 tures the nominal liability of one node to another in

 the system as a proportion of the debtor node's total

 liabilities. We assume that all debt claims have equal

 priority. This equality of priority implies that the pay-

 ment made by node i to node j is given by piHii. This
 implies that the total payments received by i are equal

 to En I H[pj. Further, all payments are made to some
 node in the system, and, therefore,

 1l

 Vi, Hij = 1,
 j=l

 or, in matrix notation,

 Ill=l,

 an equality we will use later in the analysis.

 The total cash flow to the owners of the equity of

 node i equals the sum of the payments received by

 other nodes plus the operating cash flow. This implies

 that the total cash flow to node i equals

 E1iTpj + ei.
 j=1

 The value of the equity of node i is given by total cash

 flows less payments to creditors. In other words, the

 value of node i's equity is

 ZH7iTpj + ei -pi.
 j=l

 Note also that, by using (1) and (2), the financial sys-

 tem (L, e), where L is a nominal payments matrix and

 e is a vector of operating incomes, can be equivalently

 described by the corresponding triple (HI, p, e), where
 11 is a relative liabilities matrix, p is a payment vector,

 and e is an operating cash flow vector. We will flesh

 out this description of a financial system in the subse-

 quent analysis.

 Intuitively, a clearing payment vector for the finan-

 cial system should represent a specification of the

 payments made by each of the nodes in the financial

 system that is consistent with the legal rules allocating

 value among nodes and among holders of debt and

 equity. Three criteria that must be satisfied are (a) lim-

 ited liability, which requires that the total payments

 made by a node must never exceed the cash flow avail-

 able to the node; (b) the priority of debt claims, which

 requires that stockholders in the node receive no value

 until the node is able to completely pay off all of its

 outstanding liabilities; and (c) proportionality, which

 requires that if default occurs, all claimant nodes are

 paid by the defaulting node in proportion to the size

 of their nominal claim on firm assets. These desiderata

 motivate the following definition.

 DEFINITION 1. A clearing payment vector for the

 financial system (II, p, e) is a vector p* E [0, p] that sat-

 isfies the following conditions:

 a. Limited Liability. Vi E N,

 p* < E3I-Tp* + e.
 j=l

 b. Absolute Priority. Vi E N, either obligations are

 paid in full, that is, p* =i, or all value is paid to cred-
 itors, that is,

 = 117pe.I P= I-ITp* + ei. l
 j=l

 Under this definition, some firms will be forced to

 pay out all of their value to creditors. This fact raises
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 the question of why firms facing certain default pro-

 vide their cash flows to the clearing system, know-

 ing that all cash they contribute will be paid out to

 other firms. We have in mind a situation in which

 ex ante there was uncertainty as to the realized cash

 flows of the firm. To raise funds for operations, firms

 borrowed from other firms in the network. Ex ante,

 firms expected to have positive equity balances in

 some states of nature. Ex post, uncertainty is resolved,

 and claims are cleared. It is this ex post clearing, cor-

 responding to one of many realizations of the uncer-

 tainty faced ex ante, that we model in this paper.

 Ex post, some firms find themselves with zero equity

 balances, paying out all value to other firms in the sys-

 tem. Of course, ex post, firm owners would prefer not

 to make these payments. However, this is irrelevant

 because we assume a perfect claim-enforcement tech-

 nology under which all ex ante commitments must be

 honored. The assumptions we make regarding con-

 tracting technology are entirely standard in the finance

 literature and adopted in countless articles. However,

 because bilateral clearing with a perfectly efficient con-

 tracting technology is a trivial problem, the extant lit-

 erature places little emphasis on these assumptions.

 One central point of this paper is that the clearing

 problem is not trivial in a multilateral network with

 cyclical liabilities.

 2.3. Existence of Clearing Payment Vectors

 In the previous section we defined a clearing vector

 using the standard rules of value division between

 debtors and creditors: absolute priority, proportion-

 ality, and limited liability. In a context in which one

 firm is indebted to another firm, these rules always

 clearly specify a unique division of value between the

 debtor and creditor firms. Are these standard rules of

 value division sufficient to produce a unique division

 of value in a multifirm environment with cyclical obli-

 gations? Will there exist cases in which no division of

 value is consistent with these rules, or cases in which

 more than one division of value is consistent? We will

 show that a division of value consistent with standard

 rules of value division always exists. Moreover, under

 mild regularity conditions that ensure that all parties

 of the system actually have some value to distribute,

 only one pattern of payments is consistent with the

 standard rules of value division. In other words, we

 will show that clearing vectors exist and are unique.

 To establish the existence of a clearing vector, we

 will require a fixed-point characterization of clearing

 vectors. To establish this fixed-point characterization,

 first note that limited liability and absolute priority

 imply that p* E [0, p] is a clearing payment vector if

 and only if the following condition holds: Vi E N,

 P* = min [e. + EnTiP* i

 The first term in the minimum expression on the right-

 hand side of the above expression represents "what

 the node has," the total inflows to i. The second

 term in the minimum expression is "what the node

 owes," the total obligations of node i other nodes in

 the system. A clearing vector is a vector in which

 every node pays the minimum of what it has and

 what it owes. From the above discussion, we see that

 the clearing vector is a fixed point, p*, of the map,

 (F(.;F[, p, e): [0, p] -- [0, p], defined by

 4?(p; FJ J, e) _(JTp+e) AP

 An economic interpretation of 1d is that PD(p) repre-

 sents the total funds that will be applied to satisfy

 debt obligations, assuming that nodes receive inflows

 specified by p from their debt claims on other nodes.

 We now show, through a fixed-point argument using

 the (F map, that every financial system has a clearing
 vector.

 THEOREM 1. Corresponding to every financial system

 (II -, e)
 a. There exists a greatest and least clearing payment vec-

 tor, p+ and p-.

 b. Under all clearing vectors, the value of the equity at

 each node of thefinancial system is the same, that is, if p'

 and p" are any tzvo clearing vectors,

 (FLT (p) + e - )+ T (T(P) + e - p)+.

 PROOF. To prove Theorem 1, we need to first char-

 acterize some basic properties of the (F map. We note
 that (F is positive, increasing, concave, and nonexpan-
 sive. The assertions of positivity, monotonicity, and

 concavity follow because (F is the composition of the

 240 MANAGEMENT SCIENCE/Vol. 47, No. 2, February 2001
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 positive, increasing, affine map q -- FTq + e, and the
 positive, increasing, concave map q -> q A p. To show

 that the map is nonexpansive, first note that, for any

 three vectors x, y, and z, IIXAZ-YAZ 1 < 11x-y1. This
 result implies that 11 @(p)-1(p = ) (JlFp + e) A p-
 (lTp' + e) A P < JJ Tp - lTp' 11. Next note that the col-
 umn sums of HT all equal 1. This implies, from basic

 matrix algebra, that I I I T I I I I = 1. Thus, I7l Tp_7L TpI 11 <

 I p - p' 1, establishing nonexpansiveness.
 Let FIX(@) represent the set of fixed points of (D.

 Because (D is increasing, (D(O) > 0 and 4(p() < p, the
 Tarski fixed-point theorem (see, e.g., Zeidler 1986,

 Theorem ll.E) implies that FIX(@) is nonempty and,
 moreover, possesses a greatest and least element. Thus

 (a) is established.

 To prove (b), let p' be any clearing vector. We will

 show that the value of equity is the same under p' and

 p+. This is sufficient to establish (b). To show that the

 value of equity is the same under p' and p+, first note

 that HT is an increasing map, as is the map x - x+.

 Thus, we must have, because p+ > p', that

 (HT(p+) + e - -)+ > (rT (pt) + e - p)+ .

 Thus, if

 (FIT(p+) + e - #)+ (LT(p') + e -),

 then we would have that

 (HJT(p+) + e -p)+ > (HT(p') + e -p)+. (3)

 Because p+ and p- are both clearing vectors, it also

 must be the case that

 (HIT(p+) +e -p)+ = HT(p+) +e-p+, (4)

 (FIT(p') +e- -)+ = HT(p') + e - p'. (5)

 Expressions (3), (4), and (5) imply that

 HJT(p+) +e-p+ > HT(p1) + e (6)

 Now, note that LIl = 1. This implies that

 1. (T(p+) - p+) = 1. (T(p') _ p') =0.

 Thus,

 1. (HTTp + e - p+) 1. (rT (,) +\ e -\ p' 7

 However, (6) implies that

 1. (FT(p+) +e-p+) > (T(pI) + e - p'). (8)

 The contradiction between expressions (6) and (7)

 establishes (b). O

 2.4. Uniqueness of Clearing Vectors

 As we have seen, the existence of a clearing vector

 follows from a simple fixed-point argument. Estab-

 lishing uniqueness for a large range of financial sys-

 tems requires more work. We need to rule out cases

 where the same allocation of equity value can be

 supported by numerous specifications of payments

 between nodes. Cases exist in which clearing vectors

 are not unique. See Appendix 2 for an example. In this

 section we shall show that, to rule out such cases, we

 need only impose conditions that ensure that all parts

 of the system have some tangible economic value, in

 the form of operating cash flow, to distribute. To make

 these conditions precise, we require some definitions.

 The first key definition is that of a "surplus set."

 DEFTNITION 2. A set S c N is a stirplus set if no node

 in the set has any obligations to any node outside the

 set and the set has positive operating cash flows, that

 is, if V(i,j) ESxSc,Hij==0and EiEs ei > 0.
 Intuitively, a surplus set is a closed reservior of

 value in the financial system. Because the financial

 system is conservative, neither creating nor destroy-

 ing value, the value in a surplus set must be allocated

 somewhere. Because the surplus set is closed, value

 must flow to some node in the surplus set itself. This

 observation is formalized in the next lemma.

 LEMMA 1. If p* is a clearinig vector, then it is not possi-

 blefor all nodes in a sturpluts set to have zero equity value.

 PROOF. Suppose S is a surplus set. Let Pi represent

 the sum of all of the payments received by a node i E S

 from nodes in SC. By the definition of a surplus set,

 nodes in S make no payments to nodes in SC. Thus, if

 all nodes in S have zero equity value, it must be the

 case that

 Pi= T p?j + ei + Pi Vi E S. (9)
 jES
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 Summing the equations specified in (9) over i E S thus

 yields

 Epi = EL rIpj + (Pi + ei). (0 ~~~~ iii(10)
 ies jes ies ies

 Using the fact that S is a surplus set, we also have that

 EHiT = 1. (11)
 ieS

 Expressions (10) and (11) imply that

 0 = E(P+ + ei),
 ieS

 contradicting our assumption that Eies ei > 0. D
 The second key to establishing uniqueness is a

 "financial structure graph," which describes in a qual-

 itative fashion the links between the nodes in a finan-

 cial system.

 DEFINITION 3. The financial structure graph asso-

 ciated with the financial structure (FL, -, e) is the

 directed graph whose vertices are the nodes of the

 financial system N, and whose edges are defined by

 i > je 'Hij > . 11
 The direct liabilities of each node in the system

 are to the nodes to which the agent has contractual

 obligations. However, these direct links by no means

 exhaust the set of all nodes that are affected by a

 node's default. Defaults cascade through the system.

 The default of a single node reduces the inflows to its

 creditors, perhaps triggering the default of one of these

 creditors, and even, perhaps, defaults further down-

 stream. How far downstream can the risk of a given

 node in the system travel? An upper bound on propa-

 gation is provided by the concept of the risk orbit of a

 node in the system. The risk orbit of a node is the set of

 all nodes that are connected to the given node through

 some directed path, however circuitous, through the

 system.

 DEFINITION 4. For each node i E N, define the

 risk orbit of node i, denoted by o(i), as follows:

 o(i) = {j E N>: there exists a directed path from i to j1.11
 It would appear that, because they abstract from

 the magnitude of exposures, concepts such as strong

 connectedness and risk orbits are incapable of provid-

 ing any useful characterization of clearing payment

 vectors for the system. This is not correct. In fact, a

 very simple property of risk orbits forms the basis for

 our proof of the uniqueness of the clearing payment

 vector.

 LEMMA 2. Suppose that p* is a clearing vector for

 (FL, p, e). Let o(i) be a risk orbit that satisfies Ejeo(i) ej > 0.
 Then, under p*, at least one node of i has positive equity

 value, that is,

 3j E o(i), such that -. < (JJTp* + e)j.

 PROOF. First note that o(i) is a surplus set. To see

 this, note that if some node, say i', in o(i) owed some-

 thing to a node j E o(i)C, then, by appending to the
 directed path from i to i' the edge i' -- j, one could

 construct a directed path from i to j, contradicting the

 assumption that j is not in o(i). Lemma 1 shows that

 every surplus set contains a node with positive equity

 value. D

 The previous lemmas form the basis for a demon-

 stration of the uniqueness of a clearing payment vec-

 tor under a mild additional restriction that we term

 regularity.

 DEFINITION 5. A financial system is regular if every

 risk orbit, o(i), is a surplus set.

 Note that, in our model, real economic value is

 produced from operating income and this value is

 conserved by the clearing system. Bankrupt nodes

 have their value transferred to solvent creditor nodes.

 Moreover, our clearing system is closed; no value

 leaves the system. Regularity rules out cases where

 part of the network lacks any economic value, in the

 form of operating cash flows, to distribute. Thus, in

 essence, regularity boils down to the existence of some

 value somewhere in the system that can reach all

 points in the system. A simple sufficient condition

 for regularity is that all nodes have positive operat-

 ing cash flows, another simple condition for regular-

 ity is that all nodes in the financial structure graph are

 strongly interconnected and some node has positive

 equity value. The next theorem shows that regularity

 is sufficient to ensure the existence of a unique clear-

 ing vector.

 THEOREM 2. If thefinancial system is regular, the great-

 est and least clearing vectors are the same, i.e., p+ = p-,
 implying that the clearing vector is unique.

 PROOF. See Appendix 1.
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 3. Characterizing Clearing Vectors

 3.1. Sequence of Defaults

 In this section we show that the clearing vector can be

 viewed as the product of a simulated or "fictitious"

 default process. This process both permits the con-

 struction of a simple algorithm for identifying clearing

 vectors and produces a natural metric for measuring

 a node's systemic risk exposure. We call this simple

 algorithm thefictitious default algorithm. The essence of

 the algorithm is simple. First, determine each node's

 payout, assuming that all other nodes satisfy their

 obligations. If, under the assumption that all nodes

 pay fully, it is, in fact, the case that all obligations are

 satisfied, then terminate the algorithm. If some nodes

 default even when all other nodes pay, try to solve the

 system again, assuming that only these "first-order"

 defaults occur. If only first-order defaults occur under

 the new clearing vector, then terminate the algorithm.

 If second-order defaults occur, then try to clear again

 assuming only second-order defaults occur, and so on.

 It is clear that since there are only n nodes, this process

 must terminate after n iterations. The point at which

 a node defaults under the algorithm is a measure of

 the node's exposure to the systemic risks faced by the

 clearing system.

 We assume henceforth that the financial system has

 a unique clearing vector. As shown by Theorem 2, reg-

 ularity is a sufficient condition for the clearing vec-

 tor to be unique. In this section, we characterize this

 clearing vector. First we develop an algorithm of find-

 ing the clearing vectors. Describing the algorithm in

 detail and proving that it is effective requires that

 we develop some new concepts. Let S be the set of
 supersolutions of the fixed-point operator FD; that is,

 S = {p E [0, p]: 4>(p) < p1. The supersolutions are the
 set of proposed payment vectors under which pay-

 ments received exceed payments required given the

 rules of limited liability and absolute priority. Thus,

 supersolutions are payment vectors under which some

 node is paying other nodes more than its total inflow.

 Note that, for any such supersolution, because total

 equity value is positive, it must be the case that not all

 nodes are paying more than their inflow, i.e., it is not

 possible that 4>(p) < p. For each p E S, let the default

 set under p, which we denote by D(p), be the set of

 nodes i, such that D(p)i < Pj. By the earlier observa-
 tion, D(p) cannot contain all nodes. Let A(p) represent

 the n x n diagonal matrix defined as follows:

 A(p)= J1 i=jandiED(p)
 O otherwise

 A(p)ij is a diagonal matrix whose values equal 1 along
 the diagonal in those rows representing nodes not in

 default under p, and equal to 0 otherwise. Thus, when
 multiplied by other matrices or vectors, the A matrix

 converts the entries corresponding to the nondefault-

 ing node to 0. The complementary matrix I - A(p')

 converts entries corresponding to defaulting nodes

 to 0. For fixed p' E S, define the map p -> FFP,(p) as
 follows:

 FF(p) )-A(p') (IT (A(p')p + (I - A(p')jP)) + e) (FIX)

 ? (I -A(p'))().

 This map, FFp1 (p), simply returns, for all nodes not
 defaulting under p', the required payment p, and, for
 all other nodes, returns the node's value assuming

 that nondefaulting nodes under p' pay in full and

 defaulting nodes under p' pay p. By our earlier result,

 Lemma 1, the default set is not a surplus set. Thus,

 A(p)L( has a row sum that is less than 1, and no row

 sum exceeds 1; this, in turn, implies that FFp has a
 unique fixed point by standard input-output matrix

 results (Karlin 1959, Theorem 8.3.2). Call this fixed

 point f (p'). Note that only when p' is a supersolution

 can we be assured that f(p') is well defined. Next,

 define inductively the following sequence of payment

 vectors:

 p? =j; pi =f(pi-l) (FDS)

 We call this sequence of vectors the fictitious default

 sequence, and we call the process of producing these

 vectors thefictitious default algorithm.

 LEMMA 3. The fictitious default algorithm stated in

 (FDS) produces a well-defined sequence of vectors, pi. This

 sequence decreases to the clearing vector in at most n iter-

 ations of the algorithm.

 PROOF. First, we show by induction that the ficti-

 tious default sequence is well defined and decreasing.

 To show this, we must show that for all pi, pi is a
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 supersolution to (F for all j and that the sequence (pJ)

 decreases. We establish this result by induction. When

 j = 0, these assertions are obvious. Next, suppose the

 assertions are true for pk. Note that the definition of

 the A matrix implies that A(pk)pk + (I - A(pk))j - pk.

 Because pk is a supersolution to (F, it must be the

 case that for all defaulting nodes i, (flpk + e)i < Pk
 This implies, combined with the definition of A, that

 (T (pk) = FFP k (pk). By the induction hypothesis, pk is a
 supersolution to (D. Therefore, pk is a supersolution to

 FF k. This fact implies that pk+l, the fixed point of FF kk,

 is less than or equal to pk. Because pk+l < pk, the set

 of nodes at which default occurs must be no smaller

 under pk than under pk+l. Now, if the set of nodes is the

 same, then (D (pk+l) = FFPk (pk), which implies, because
 by definition pk+l is a fixed point of FF pk(pk), that pk+l
 is a fixed point of (D, and thus trivially a supersolution.

 If the set of defaulting nodes is larger under pk+l, then

 some nodes that paid their obligations in full under

 pk default under pk+l, and the rest of the nodes either

 default under both payment vectors or under neither.

 Thus, for those nodes such that default occurs under

 pk+l but not pk, 4(pk+l)i < pk+l. For all other nodes, the

 fixed-point construction implies that 4)(pk+l), = Pk+1
 Thus, we have that p' is a supersolution to (F and that
 (pl) is a weakly decreasing sequence.

 As shown in the previous paragraph, if the set of

 defaulting nodes is the same under both pi+1 and pi,
 then (i) pi is a fixed point of (D, and (ii) the sequence
 will remain constant after pi+'. If pi fails to be a fixed

 point of the map (F, then a node that did not default
 under pi defaults under pi+'. In this case, the number

 of defaulting nodes, specified in the next A matrix, will

 increase in the next iteration. Because there are only n

 nodes and at most n -1 can default in any supersolu-

 tion, it must be the case that the payment vector pro-

 duced by the algorithm ceases to change after at most

 n iterations. Because the sequence is constant only at

 fixed points, the clearing vector is attained in at most n

 iterations. [1

 In addition to being computationally efficient, the

 algorithm has an economic interpretation: The step in

 the algorithm at which a node is added to the default-

 ing set can be used as a measure of the node's financial

 health. Nodes that default under the first trial solu-

 tion are fundamentally insolvent because they cannot

 survive even with no systemic risk exposure. Nodes

 that fail in the next wave are quite fragile in that they

 fail whenever fundamentally insolvent nodes fail. The

 third-order failures are triggered by the failure of frag-

 ile, but not fundamentally unsound nodes, and so on.

 Thus, nodes are partitioned by the algorithm into sol-

 vent nodes and 1, 2... , n - ith order failures.

 3.2. Programming Characterization

 Next we will show that clearing payment vectors

 can be identified by solving almost any programming

 problem that places weight on maximizing payments

 by all nodes in the system subject to the limited lia-

 bility condition. Formally stated, we associate with

 each financial system (FL, p, e), and each function

 f: [0, p i] -J, the programming problem

 P(Fl -, e, f) Max f (p)
 st. p<JfITp+e

 The link between this programming problem and

 clearing payment vectors for the financial system is

 provided by the following lemma.

 LEMMA 4. If f is strictly increasing, then any solution

 to P(FL, P, e, f) is a clearing vectorfor thefinancial system.

 PROOF. If p* solves P(Hl, p-, e, f), the fact that p* is a

 feasible solution to P(Hl, p, e, f) ensures that p* satis-
 fies the limited liability condition for a clearing pay-

 ment vector. If absolute priority were not satisfied, say

 at node i, then it would be the case that pi* p- and

 (Tp* +e-p*)i > 0.

 Consider the vector pe, which is equal to p* in all com-
 ponents except i, and which, for i, is given by p* + E,
 where E is chosen sufficiently small to ensure that lim-

 ited liability remains satisfied. Because

 (nTp, ? e - p-)j- (ITp* + e -p)j = EFlij > 0,

 Pe is feasible. Because Pe is at least equal to p* in all its
 components and greater than p* in one of its compo-

 nents, and because f is strictly increasing, it must be

 the case that f(p*) < f(PE), contradicting the supposi-
 tion that p* is a solution to P(FI, p, e, f). 1

 Because clearing vectors are determined entirely by

 the limited liability and absolute priority conditions, it
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 follows that these two conditions always produce pay-

 off vectors that maximize the total extraction of pay-

 ments from the nodes in the financial system. Because

 the clearing vector is unique in any regular financial

 system, the result also implies that in regular finan-

 cial systems, all decision makers who prefer more to

 less will agree that the clearing vector maximizes their

 objectives. Thus, for example, whether one attempts to

 maximize cents on the dollar paid or total payments,

 or payments weighted by a biased weighting scheme

 that favors some nodes over others, the end result

 will be the same-the selection of the clearing vector.

 The above result shows also that, for a regular finan-

 cial system, solving the programming problem given

 by P(II, p, e,f ) for a suitably chosen function f, say
 a linear function with positive weighting constants,

 is a way of computing the clearing vector. In fact,

 this is exactly the approach the monetary authorities

 in Kuwait took to clearing the financial net after the

 crash of the al-Manakh market. Given tlhe n - 1-step

 convergence of the fictitious default algorithm dis-

 cussed above, however, this programming approach

 may not be an efficient way of computing clearing vec-

 tors, given that only one variable will be introduced

 into the basic solution on each pivot. Algorithms that

 exploit the economics of the problem, such as the ficti-

 tious default algorithm developed above, allow for the

 simultaneous introduction of many defaulting nodes

 in a single step.

 4. The Comparative Statics of the
 Clearing System

 The first question we will address is how this clearing

 payment vector changes with changes in the exoge-

 nous parameters of the model. We first consider the

 relationship between this clearing payment vector and

 the operating cash flows received by the system e,

 while holding the nominal liability matrix L (or equiv-

 alently II and p) constant. The basic characterization

 of this relationship is provided below.

 LEMMA5. The clearing payment vector is a con-

 cave, increasing ftunction of operating cash flow vec-
 tor and the level of nominal liabilities. In other words,

 the function e -- FIX(.((; H, i, e)), and the func-
 tion p FIX(I(.; H, 1, e)) are concave, increasing, and
 nonexpansive.

 PROOF. For the purposes of this proof, define

 the function F: [O,p-] x 9" :-- [O,p-] by F(p,e)

 F(p, e; H, j). The clearing payment vector is given

 by the function f: St+ - [0, p], defined by f(e)=

 FIX(F(., e)). A theorem from Milgrom and Roberts

 (1994) shows that the fact that F is increasing in e

 (established in the proof of Theorem 1) implies that f

 is increasing. To see that f is concave and nonexpan-

 sive, define a sequence of functions, (f,,(e)), =, induc-
 tively as follows:

 f,1(e) = F(f,-1(e), e), fo(e) 0.

 For each fixed e E 9i++, f, (e) is just the nth iteration
 of the map p -- 1(p; HI, p, e) function starting at the
 initial payment vector 0. Thus, standard results on the

 convergence of iterates of monotone increasing oper-

 ators show that f, (e) t f(e), for all e. Using the fact

 that F is nondecreasing, jointly concave in p and e,

 and nonexpansive, induction shows that, for all n, f,1

 is concave and nonexpansive. Thus, f is the point-

 wise limit of nonexpansive concave functions, and

 thus concave and nonexpansive. The above argument

 establishes the claim of the lemma for the function

 e - FIX(D(.; H, p, e)). The proof of the claim for pJ

 FIXQF(.; H, p, e)) and HI - FIX(QI(.; H, p, e)) is identi-
 cal and thus will be omitted. O

 Note that in the standard single-period/single-firm

 financial model, the payment to debtholders equals

 min[-, e], where e is the firm's operating earnings

 and - is the level of the firm's nominal liabilities.

 Thus, the payment received by debtholders is a con-

 cave, increasing, nonexpansive function of the firm's

 operating cash flow and the level of nominal lia-

 bilities. Lemma 5 shows that these qualitative fea-

 tures of the debt payments in single-firm settings are

 inherited by the debt payment vectors of multinode

 clearing systems. This result has a number of direct

 implications. For example, suppose we allowed for

 stochastic operating cash flows. In this case, concav-

 ity of the payment stream in operating cash flows

 implies that increases in the riskiness of operating cash
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 flows, in the sense of second-order stochastic domi-

 nance (Huang and Litzenberger 1988, Chap. 2), would

 reduce the expected payments on each debt claim. In

 other words, for all nodes i, E[Pj] would fall with an
 increase in the risk of the operating cash flow vector,

 e. If we, in addition, imposed the standard assump-

 tions for contingent claim pricing, e.g., that the finan-

 cial markets are statically or dynamically complete,

 then the initial value of each node of the financial sys-

 tem would be given by its discounted expected value

 under the market pricing or "risk-neutral" probability

 measure (e.g., Duffie 1988, Chap. 22). Thus, our con-

 cavity result would imply, in this setting, that increases

 in risk under the pricing measure would lower the

 value of each traded debt claim.

 The results for equity valuation are more interesting.

 The application of option pricing in the single-firm

 setting, as often taught in first-year finance courses,

 shows that equity may be priced as a call option on

 the value of the firm with the strike and maturity date

 equal, respectively, to the face value of 0-coupon debt

 and its maturity date. For the single firm, an increase

 in riskiness as represented by the volatility of the value

 of the firm (debt plus equity) not only decreases the

 value of debt, but also increases the value of equity.

 However, such risk shifts will not lead unambiguously

 to increased equity values for the nodes in a multi-

 firm system. In a multifirm system, all debt claims are

 owned by stockholders at some nodes of the system.

 This implies that increases in risk across the system

 have two effects. First, they raise the value of equity

 by lowering the value of the debt payments made to

 other nodes. Second, the increased risk also lowers the

 value of paymentsfrom other nodes. Thus, the effect of
 risk increases on individual node equity is ambiguous.

 Because the total equity value of the system equals

 total operating cash flows, an increase in the volatil-

 ity holding the mean constant has no effect on over-

 all equity value. However, the lowered value of debt

 tends to reduce the value of the equity of those firms

 that are net creditors, and increase the value of the

 equity of net debtors.

 Next, note that all of our results can also be inter-

 preted in terms of node value. To understand this,

 note that the terminal-date equity in a financial sys-

 tem is FITp* + e-p*, and that the debt is p*(e), where

 p* is the clearing vector for the financial system. Thus,

 the total terminal value of any node in the system is

 the value of debt plus the value of equity, or FITp* + e.
 Total value of all nodes in the economy is thus just

 1. (FITp* + e) = 1 (p* + e), the sum of the value of equity
 and the value of all payments on liabilities under the

 equilibrium clearing vector.

 Using this fact we can obtain another consequence

 of Lemma 5 that relates to the effect of cash flow

 volatility on the aggregate value of nodes in the finan-

 cial system. Since, in an arbitrage-free economy, the

 value of a node is just the discounted expectation of

 its terminal value under the market-pricing measure,

 and because the function mapping cash flows to node

 value, e -- FITp* (e) + e, is concave, increases in volatil-
 ity, under the market-pricing measure, adversely affect

 firm value.

 COROLLARY. Increases in the volatility (under the

 market-pricing measure) of operating cashflows lowers the

 initial value of all nodes in the system.

 Thus, node value (debt plus equity) is reduced

 by economic volatility, even though, in our analy-

 sis, there are no dissipative consequences of financial

 distress even when markets are perfect and friction-

 less. Volatility reduces the size of payments between

 nodes, and this reduces the market value of nodes.

 Because, clearly, in the frictionless market setup spec-

 ified above, volatility has no adverse overall welfare

 consequences, this result should be interpreted as a

 caution against interpreting the reduction in corporate

 value caused by risk as reflecting either market imper-

 fections or irrational asset pricing.

 Next, we show that, in some sense, convex combi-

 nations of financial systems can never have default

 or payment rates inferior to the worse of the two or

 superior to the better of the two. To permit a precise

 formulation of this idea, let p*(II, p, e) be the clearing

 payment vector associated with an arbitrary financial

 system (II, p-, e); that is, p*(FI, p, e) -FIX[1(.; p, e)].
 A A-convex combination of the financial systems

 (II', p', e') and (II", p", e") is the financial system
 ("IA, PA/ eA), defined by

 ([A, PA, eA) = A(LI, p, e') + (1-A)(LI, p, e"),

 A E [0,1].
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 LEMMA 6. Suppose that the financial system

 (-IA, PA eA) is a A-convex combination of the financial
 systems (Li', p', e') and (LI", p", e"), then the equilibrium
 clearing payment vectors of the financial systeils, p*, sat-

 isfy the following inequalities:

 p*( p, el) A p* (,- Ip, e") ' P*(HA PAA)

 < p*( JI1, p', el) v p*(H7 pA, eA).

 PROOF. Note that, for all i E N, the function A -

 A(p; IA, PA, eA)i is linear, and therefore monotone.
 Thus we have that

 41(p; ', p', el) A 41(p; ", p, e") ' 1)(P; A PA eA)

 < ()(p; I', p', e') v '1(p; IT",p, e").

 Let

 H-(p) 4)(p; 171', p, e') A 41(p; LI", Ip, e");

 H+(p) _ 4(p; [I', p', e') v 4I(p; LI", p', e').

 Note that H- and H+ are monotone increasing maps
 defined on [0, p] with fixed points in this order inter-

 val. If p+ is a fixed point of H+ and p- is a fixed point

 of H-, then the above inequality implies that

 p <p *(IAeA) <P?-

 Because p* (II', p', e') v p* (LI", p"', e") is a supersolution
 to H+, i.e.,

 p+ < P*(JI e') vp* (I",i"e"),

 similarly, because p*(II', p', e') Ap* (II", p"', e") is a sub-
 solution to H-,

 p- > p*(f, p', e') Ap*(LI", p3", e").

 The inequalities follow. CL

 Lemma 6 is a fairly weak result. However, a stronger

 characterization, such as a concavity result for finan-
 cial systems (e.g., a result showing that convex com-

 binations of systems yield higher payment rates than

 convex combinations of the payment vector of the
 two systems being combined), cannot be obtained. In

 fact, it is easy to construct counterexamples to this

 stronger characterization.' The failure of concavity
 occurs because the map (II, p) -> 41(p; II, p, e) is not
 concave, although it is concave in each of the variables,
 II and p, separately.

 1 A numerical counterexample is available on request.

 5. Possible Extensions and
 Concluding Remarks

 In this paper, we provide conditions for the existence

 and uniqueness of a clearing vector for a complex

 financial system, analyze the properties of the clearing

 vector, and provide comparative statics describing the

 relationship between the clearing vector and under-

 lying parameters of the financial system. This work

 represents a contribution to our understanding of the

 modeling of complex financial systems featuring cycli-

 cal obligations between the parties. However, it is only

 a first step in the development of a research program

 in this area. In fact, one of the virtues of our analysis

 is that it can be extended in many directions. Exten-

 sions fall into three broad categories: (i) utilizing the

 current model for valuation and risk analysis, (ii) deal-

 ing with more complex legal/institutional structures,

 and (iii) incorporating dynamics.

 The simplest extension of the present analysis is

 to use the formulae developed in the paper to value

 financial claims and assess default probabilities for

 financial systems. Given a structure of liabilities, the

 value of the debt and equity claims for a fixed level

 of operating cash flows at the terminal date is deter-

 mined by our model. If we assume operating cash

 flows follow a standard stochastic process between the

 initial date and the clearing date, then this stochastic

 process, combined with the terminal boundary condi-

 tions imposed by our model and standard risk-neutral

 valuation technology, can generate prices for the debt

 and equity of the nodes in the system (e.g., Duffie

 1988). In addition, probabilities of default and default

 correlation can be computed easily. In addition, the

 distribution of cash flows to each of the nodes also

 can be computed and inverted to yield value-at-risk
 estimates.

 Extending our results to allow for more complex

 legal and institutional structures is almost as trans-

 parent. For example, the nodes in the system could

 be allowed to hold intercorporate equity claims as

 well as intercorporate debt claims. In this case, inflows

 would be augmented by equity as well as debt inflows.

 Because equity claims are linear, this extension would

 not complicate our analysis significantly. Multiple

 priority classes could be accommodated by our frame-

 work. To accommodate multiple priority classes, we
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 would utilize a sequential clearing procedure in which

 first a clearing vector for senior claims is found, then

 the residual value is treated as the operating cash

 flows of the system when clearing of the next highest

 priority claim, and so on. Another important exten-

 sion would be to allow for violations of absolute pri-

 ority, a significant factor in corporate bankruptcies,

 although not in some of the financial system clearing

 systems addressed earlier. The key assumptions that

 drive most of our results are that creditor claims are

 continuous and increasing in the value of the node. If

 violations of absolute priority are the product of effi-

 cient multilateral bargaining, as assumed in much of

 the literature (e.g., Brown 1989), then creditor claims

 are likely to have this property. In systems where there

 are substantial fixed costs of financial distress, conti-

 nuity is lost and, for this reason, one would expect

 to obtain more opaque results: for example, the lack

 of a unique clearing vector even when mild regular-

 ity conditions, such as those used in this paper, are

 imposed.

 The most difficult direction of extension would be

 to allow for more than one clearing date, and thus

 incorporate true dynamics. In principle the extension

 is straightforward and would proceed as follows. First,

 allow for intercorporate equity and assume that nodes

 that default at a given date become wholly owned

 by their creditors from that date forward. Next, allow

 all nodes to borrow from a node outside the sys-

 tem that itself is not subject to default risk. The out-

 side node, or "central bank," would provide funds

 at a market-clearing rate. Thus, nodes would only

 default when, at the clearing vector, the value of future

 inflows is less than the value of liabilities. Using this

 motif and backward induction, one could recursively

 solve for clearing vectors. Uncertainty could be intro-

 duced into this framework by recursively comput-

 ing the expected value of future inflows to deter-

 mine the current economic value of the node and

 thus solve the default problem for successively ear-

 lier periods. Of course, this sort of extension of our

 analysis, through the "curse of dynamic program-

 ming," would greatly increase the complexity of the

 analysis.
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 Appendix 1
 PROOF OF THEOREM 2. By Theorem 1, a greatest and least clear-

 ing vector exists. By definition, the greatest clearing vector, p+, is

 at least weakly greater than the smallest clearing vector, p, i.e.,

 +> P . (A1.1)

 Suppose to obtain a contradiction that the greatest and least clear-

 ing vectors are unequal, i.e.,

 P+ 7O P-. (A1.2)

 Let E+(EB-) represent the value of equity under clearing vector

 p+ (p-). Note that, by Theorem 1, the value of equity at all nodes

 is the same under all clearing vectors, i.e.,

 Vj, Ej+ = Ej-. (A1.3)

 A straightforward consequence of (A1.3) is that the set of zero

 equity value nodes under p+ equals the set of positive equity value

 nodes under p-. Thus, without ambiguity we can apply the terms

 "zero equity value" and "positive equity value" to nodes without

 specifying the clearing vector.

 By absolute priority, it must be the case that, for all nodes j
 that have positive equity value, pj+ = py- = j. Thus, if (A1.1) and

 (A1.2) hold, it must be the case that there exists a zero equity value

 node, i, such that

 P ' (A1.4)

 Regularity means that the risk orbit of every node contains some

 node with a positive income. By the hypotheses of regularity and

 Lemma 3, the risk orbit of i must thus contain a positive equity

 value node. Thus, for some I E {1, . .. , n-l), there exists a path

 i = i0 - i1 -> - -> il-1 -> il III,l (A1.5)

 where all nodes in the path are zero equity value nodes except for

 the last node, node ;n, and node in has positive equity value.

 First we claim, by mathematical induction, that p+ -p- > 0 for

 nodes io .k ... i1-1. The assertion is true by (A1.4) for k = 0. Now
 suppose the assertion is true at k - 1. Because the nodes io ...i1
 are zero equity value nodes, their payments equal their inflows.

 Thus for node 1k, k > - 1, it must be the case that

 + = E11iikPi + ek and Pi = L 'kPJ + ek
 i=1 j=j

 248 MANAGEMENT SCIENCE/Vol. 47, No. 2, February 2001

This content downloaded from 218.107.132.55 on Wed, 11 May 2016 01:34:15 UTC
All use subject to http://about.jstor.org/terms



 EISENBERG AND NOE

 Systemic Risk in Financial Systems

 Thus,

 Pi+ - Pik = ELni'k (PJ+ -P7) (A1.6)
 j=1

 By the induction hypotheses p, -i > 0. Because, 1k-1 ik,
 1ik-1 ik > 0. Thus,

 rlik1 lik (Pj -P ) > ?' (A1.7)

 Expressions (A1.1), (A1.6), and (A1.7) show that p, -pj > 0. This
 result establishes the conclusion of the induction argument. This

 argument implies, in particular, that the last zero equity value node

 in the path, i11, satisfies the conclusion of the argument, that is,

 P, - Pi 1' (Al.8)

 Next, we show that (A1.8) implies that E+ > E,,. By the definition

 of equity value,

 E,+-E,, = L n1(pj+ -p) - (p+ -p,). (A1.9)
 j=j

 Because m is a positive equity value node, absolute priority implies

 that p+ = p,= p,; thus,
 In = pill III;~~~~~~~~~~~~~l

 E,+ -E,= E- 1-j,, (pj+-pj-). (A1.10)
 j=1

 Because, il1 -m , Hi1,_.l > 0. Thus,

 Ii,_ ,, P--P- (A1. 11)

 Because, (A1.1), (A1.10), and (Al11) hold, it must be the case that

 E,+> E,. This assertion contradicts (A1.2), and this contradiction

 shows that the clearing vector must be unique. O

 Appendix 2 Example of Nonuniqueness of the
 Clearing Vector in an Irregular Financial System
 Some intuition for the importance of regularity for the uniqueness

 result is provided by the following example. Suppose the system

 contains two nodes, 1 and 2, both without any operating cash

 flows. Moreover, each node has nominal liabilities of 1.00 to the

 other node. In our notation we have that e = (0, O)T', = (1, 1), and

 [1 ?]

 This system is not a regular financial system, because the single

 risk orbit of the system 11, 21 is not a surplus set. In this example,
 any vector of the form Pt = t(1, 1), t E [0, 1] is a clearing vector

 for the system. In contrast, if we modify the example by giving

 one cent to the first node by setting e' = (0.01, 0), we see that the

 unique clearing vector is given by p* = (1.00, 1.00). The payment

 vectors Pt, t < 1, do not satisfy the absolute priority condition under
 given e' because they leave Node 1 with an equity balance of

 0.01 despite the fact that Node 1 has not completely satisfied its

 nominal obligation to Node 2.
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