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 Risk and Volatility: Econometric Models and Financial Practicet

 By ROBERT ENGLE*

 The advantage of knowing about risks is that
 we can change our behavior to avoid them. Of
 course, it is easily observed that to avoid all
 risks would be impossible; it might entail no
 flying, no driving, no walking, eating and drink-
 ing only healthy foods, and never being touched
 by sunshine. Even a bath could be dangerous. I
 could not receive this prize if I sought to avoid
 all risks. There are some risks we choose to take

 because the benefits from taking them exceed
 the possible costs. Optimal behavior takes risks
 that are worthwhile. This is the central para-
 digm of finance; we must take risks to achieve
 rewards but not all risks are equally rewarded.
 Both the risks and the rewards are in the future,
 so it is the expectation of loss that is balanced
 against the expectation of reward. Thus we op-
 timize our behavior, and in particular our port-
 folio, to maximize rewards and minimize risks.

 This simple concept has a long history in
 economics and in Nobel citations. Harry M.
 Markowitz (1952) and James Tobin (1958) as-
 sociated risk with the variance in the value of a

 portfolio. From the avoidance of risk they de-
 rived optimizing portfolio and banking behav-
 ior. William Sharpe (1964) developed the
 implications when all investors follow the same
 objectives with the same information. This the-
 ory is called the Capital Asset Pricing Model or
 CAPM, and shows that there is a natural rela-

 t This article is a revised version of the lecture Robert

 Engle delivered in Stockholm, Sweden, on December 8,
 2003, when he received the Bank of Sweden Prize in Eco-
 nomic Sciences in Memory of Alfred Nobel. The article is
 copyright ? The Nobel Foundation 2003 and is published
 here with the permission of the Nobel Foundation.

 * Stern School of Business, New York University, 44
 West Fourth Street, New York, NY 10012 (e-mail:
 rengle@stern.nyu.edu). This paper is the result of more than
 two decades of research and collaboration with many, many
 people. I would particularly like to thank the audiences in
 B.I.S., Stockholm, Uppsala, Cornell University, and the
 Universite de Savoie for listening as this talk developed.
 David Hendry, Tim Bollerslev, Andrew Patton, and Robert
 Ferstenberg provided detailed suggestions. Nevertheless,
 any lacunas remain my responsibility.

 tion between expected returns and variance.
 These contributions were recognized by Nobel
 prizes in 1981 and 1990.

 Fisher Black and Myron Scholes (1972) and
 Robert C. Merton (1973) developed a model to
 evaluate the pricing of options. While the theory
 is based on option replication arguments
 through dynamic trading strategies, it is also
 consistent with the CAPM. Put options give the
 owner the right to sell an asset at a particular
 price at a time in the future. Thus these options
 can be thought of as insurance. By purchasing
 such put options, the risk of the portfolio can be
 completely eliminated. But what does this in-
 surance cost? The price of protection depends
 upon the risks and these risks are measured by
 the variance of the asset returns. This contribu-

 tion was recognized by a 1997 Nobel prize.
 When practitioners implemented these finan-

 cial strategies, they required estimates of the
 variances. Typically the square root of the vari-
 ance, called the volatility, was reported. They
 immediately recognized that the volatilities
 were changing over time. They found different
 answers for different time periods. A simple
 approach, sometimes called historical volatility,
 was, and remains, widely used. In this method,
 the volatility is estimated by the sample stan-
 dard deviation of returns over a short period.
 But, what is the right period to use? If it is too
 long, then it will not be so relevant for today
 and if it is too short, it will be very noisy.
 Furthermore, it is really the volatility over a
 future period that should be considered the risk,
 hence a forecast of volatility is needed as well
 as a measure for today. This raises the possibil-
 ity that the forecast of the average volatility
 over the next week might be different from the
 forecast over a year or a decade. Historical
 volatility had no solution for these problems.

 On a more fundamental level, it is logically
 inconsistent to assume, for example, that the
 variance is constant for a period such as one
 year ending today and also that it is constant for
 the year ending on the previous day but with a
 different value. A theory of dynamic volatilities
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 is needed; this is the role that is filled by the
 ARCH models and their many extensions that
 we discuss today.

 In the next section, I will describe the genesis
 of the ARCH model, and then discuss some of
 its many generalizations and widespread empir-
 ical support. In subsequent sections, I will show
 how this dynamic model can be used to forecast
 volatility and risk over a long horizon and how
 it can be used to value options.

 I. The Birth of the ARCH Model

 The ARCH model was invented while I was
 on sabbatical at the London School of Econom-
 ics in 1979. Lunch in the Senior Common

 Room with David Hendry, Dennis Sargan, Jim
 Durbin, and many leading econometricians pro-
 vided a stimulating environment. I was looking
 for a model that could assess the validity of a
 conjecture of Milton Friedman (1977) that the
 unpredictability of inflation was a primary
 cause of business cycles. He hypothesized that
 the level of inflation was not a problem; it was
 the uncertainty about future costs and prices that
 would prevent entrepreneurs from investing and
 lead to a recession. This could only be plausible
 if the uncertainty were changing over time so
 this was my goal. Econometricians call this
 heteroskedasticity. I had recently worked exten-
 sively with the Kalman Filter and knew that a
 likelihood function could be decomposed into
 the sum of its predictive or conditional densi-
 ties. Finally, my colleague, Clive Granger, with
 whom I share this prize, had recently developed
 a test for bilinear time series models based on

 the dependence over time of squared residuals.
 That is, squared residuals often were autocorre-
 lated even though the residuals themselves were
 not. This test was frequently significant in eco-
 nomic data; I suspected that it was detecting
 something besides bilinearity but I did not know
 what.

 The solution was autoregressive conditional
 heteroskedasticity or ARCH, a name invented
 by David Hendry. The ARCH model described
 the forecast variance in terms of current observ-

 ables. Instead of using short or long sample
 standard deviations, the ARCH model proposed
 taking weighted averages of past squared fore-
 cast errors, a type of weighted variance. These
 weights could give more influence to recent

 information and less to the distant past. Clearly
 the ARCH model was a simple generalization of
 the sample variance.

 The big advance was that the weights could
 be estimated from historical data even though
 the true volatility was never observed. Here is
 how this works. Forecasts can be calculated

 every day or every period. By examining these
 forecasts for different weights, the set of
 weights can be found that make the forecasts
 closest to the variance of the next return. This

 procedure, based on Maximum Likelihood,
 gives a systematic approach to the estimation of
 the optimal weights. Once the weights are de-
 termined, this dynamic model of time-varying
 volatility can be used to measure the volatility at
 any time and to forecast it into the near and
 distant future. Granger's test for bilinearity
 turned out to be the optimal, or Lagrange Mul-
 tiplier test for ARCH, and is widely used today.

 There are many benefits to formulating an
 explicit dynamic model of volatility. As men-
 tioned above, the optimal parameters can be
 estimated by Maximum Likelihood. Tests of the
 adequacy and accuracy of a volatility model can
 be used to verify the procedure. One-step and
 multi-step forecasts can be constructed using
 these parameters. The unconditional distribu-
 tions can be established mathematically and are
 generally realistic. Inserting the relevant vari-
 ables into the model can test economic models

 that seek to determine the causes of volatility.
 Incorporating additional endogenous variables
 and equations can similarly test economic mod-
 els about the consequences of volatility. Several
 applications will be mentioned below.

 David Hendry's associate, Frank Srba, wrote
 the first ARCH program. The application that
 appeared in Engle (1982) was to inflation in the
 United Kingdom since this was Friedman's
 conjecture. While there was plenty of evidence
 that the uncertainty in inflation forecasts was
 time varying, it did not correspond to the U.K.
 business cycle. Similar tests for U.S. inflation
 data, reported in Engle (1983), confirmed the
 finding of ARCH but found no business-cycle
 effect. While the trade-off between risk and

 return is an important part of macroeconomic
 theory, the empirical implications are often dif-
 ficult to detect as they are disguised by other
 dominating effects, and obscured by the reli-
 ance on relatively low-frequency data. In fi-
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 nance, the risk/return effects are of primary
 importance and data on daily or even intradaily
 frequencies are readily available to form accu-
 rate volatility forecasts. Thus finance is the field
 in which the great richness and variety of
 ARCH models developed.

 II. Generalizing the ARCH Model

 Generalizations to different weighting
 schemes can be estimated and tested. The very
 important development by my outstanding stu-
 dent Tim Bollerslev (1986), called Generalized
 Autoregressive Conditional Heteroskedasticity,
 or GARCH, is today the most widely used
 model. This essentially generalizes the purely
 autoregressive ARCH model to an autoregres-
 sive moving average model. The weights on
 past squared residuals are assumed to decline
 geometrically at a rate to be estimated from the
 data. An intuitively appealing interpretation of
 the GARCH(1,1) model is easy to understand.
 The GARCH forecast variance is a weighted
 average of three different variance forecasts.
 One is a constant variance that corresponds to
 the long-run average. The second is the forecast
 that was made in the previous period. The third
 is the new information that was not available

 when the previous forecast was made. This
 could be viewed as a variance forecast based on

 one period of information. The weights on these
 three forecasts determine how fast the variance

 changes with new information and how fast it
 reverts to its long-run mean.

 A second enormously important generaliza-
 tion was the Exponential GARCH or EGARCH
 model of Daniel B. Nelson (1991), who prema-
 turely passed away in 1995 to the great loss of
 our profession as eulogized by Bollerslev and
 Peter E. Rossi (1995). In his short academic
 career, his contributions were extremely influ-
 ential. He recognized that volatility could re-
 spond asymmetrically to past forecast errors. In
 a financial context, negative returns seemed to
 be more important predictors of volatility than
 positive returns. Large price declines forecast
 greater volatility than similarly large price in-
 creases. This is an economically interesting ef-
 fect that has wide-ranging implications to be
 discussed below.

 Further generalizations have been proposed
 by many researchers. There is now an alphabet

 soup of ARCH models that include: AARCH,
 APARCH, FIGARCH, FIEGARCH, STARCH,
 SWARCH, GJR-GARCH, TARCH, MARCH,
 NARCH, SNPARCH, SPARCH, SQGARCH,
 CESGARCH, Component ARCH, Asymmetric
 Component ARCH, Taylor-Schwert, Student-t-
 ARCH, GED-ARCH, and many others that I
 have regrettably overlooked. Many of these
 models were surveyed in Bollerslev et al.
 (1992), Bollerslev et al. (1994), Engle (2002b),
 and Engle and Isao Ishida (2002). These models
 recognize that there may be important nonlin-
 earity, asymmetry, and long memory properties
 of volatility and that returns can be nonnormal
 with a variety of parametric and nonparametric
 distributions.

 A closely related but econometrically distinct
 class of volatility models called Stochastic Vol-
 atility, or SV models, have also seen dramatic
 development. See, for example, Peter K. Clark
 (1973), Stephen Taylor (1986), Andrew C. Har-
 vey et al. (1994), and Taylor (1994). These
 models have a different data-generating process
 which makes them more convenient for some

 purposes but more difficult to estimate. In a
 linear framework, these models would simply
 be different representations of the same process;
 but in this nonlinear setting, the alternative
 specifications are not equivalent, although they
 are close approximations.

 III. Modeling Financial Returns

 The success of the ARCH family of models is
 attributable in large measure to the applications
 in finance. While the models have applicability
 for many statistical problems with time series
 data, they find particular value for financial time
 series. This is partly because of the importance
 of the previously discussed trade-off between
 risk and return for financial markets, and partly
 because of three ubiquitous characteristics of
 financial returns from holding a risky asset.
 Returns are almost unpredictable, they have sur-
 prisingly large numbers of extreme values, and
 both the extremes and quiet periods are clus-
 tered in time. These features are often described

 as unpredictability, fat tails, and volatility clus-
 tering. These are precisely the characteristics
 for which an ARCH model is designed. When
 volatility is high, it is likely to remain high, and
 when it is low, it is likely to remain low. However,

 407 VOL. 94 NO. 3
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 these periods are time limited so that the fore-
 cast is sure to eventually revert to less extreme
 volatilities. An ARCH process produces dy-
 namic, mean-reverting patterns in volatility that
 can be forecast. It also produces a greater num-
 ber of extremes than would be expected from a
 standard normal distribution, since the extreme
 values during the high volatility period are
 greater than could be anticipated from a con-
 stant volatility process.

 The GARCH(1,1) specification is the work-
 horse of financial applications. It is remarkable
 that one model can be used to describe the vola-

 tility dynamics of almost any financial return se-
 ries. This applies not only to U.S. stocks but also
 to stocks traded in most developed markets, to
 most stocks traded in emerging markets, and to
 most indices of equity returns. It applies to ex-
 change rates, bond returns, and commodity re-
 turns. In many cases, a slightly better model can
 be found in the list of models above, but GARCH
 is generally a very good starting point.

 The widespread success of GARCH(1,1)
 begs to be understood. What theory can explain
 why volatility dynamics are similar in so many
 different financial markets? In developing such
 a theory, we must first understand why asset
 prices change. Financial assets are purchased
 and owned because of the future payments that
 can be expected. Because these payments are
 uncertain and depend upon unknowable future
 developments, the fair price of the asset will
 require forecasts of the distribution of these
 payments based on our best information today.
 As time goes by, we get more information on
 these future events and revalue the asset. So at

 a basic level, financial price volatility is due to
 the arrival of new information. Volatility clus-
 tering is simply clustering of information arriv-
 als. The fact that this is common to so many
 assets is simply a statement that news is typi-
 cally clustered in time.

 To see why it is natural for news to be clus-
 tered in time, we must be more specific about
 the information flow. Consider an event such as
 an invention that will increase the value of a

 firm because it will improve future earnings and
 dividends. The effect on stock prices of this
 event will depend on economic conditions in
 the economy and in the firm. If the firm is near
 bankruptcy, the effect can be very large and if it
 is already operating at full capacity, it may be

 small. If the economy has low interest rates and
 surplus labor, it may be easy to develop this
 new product. With everything else equal, the
 response will be greater in a recession than in a
 boom period. Hence we are not surprised to find
 higher volatility in economic downturns even if
 the arrival rate of new inventions is constant.

 This is a slow moving type of volatility cluster-
 ing that can give cycles of several years or
 longer.

 The same invention will also give rise to a
 high-frequency volatility clustering. When the
 invention is announced, the market will not
 immediately be able to estimate its value on the
 stock price. Agents may disagree but be suffi-
 ciently unsure of their valuations that they pay
 attention to how others value the firm. If an

 investor buys until the price reaches his estimate
 of the new value, he may revise his estimate
 after he sees others continue to buy at succes-
 sively higher prices. He may suspect they have
 better information or models and consequently
 raise his valuation. Of course, if the others are
 selling, then he may revise his price downward.
 This process is generally called price discovery
 and has been modeled theoretically and empir-
 ically in market microstructure. It leads to vol-
 atility clustering at a much higher frequency
 than we have seen before. This process could
 last a few days or a few minutes.

 But to understand volatility we must think of
 more than one invention. While the arrival rate of

 inventions may not have clear patterns, other types
 of news surely do. The news intensity is generally
 high during wars and economic distress. During
 important global summits, congressional or regu-
 latory hearings, elections, or central bank board
 meetings, there are likely to be many news events.
 These episodes are likely to be of medium dura-
 tion, lasting weeks or months.

 The empirical volatility patterns we observe
 are composed of all three of these types of
 events. Thus we expect to see rather elaborate
 volatility dynamics and often rely on long time
 series to give accurate models of the different
 time constants.

 IV. Modeling the Causes and Consequences of
 Financial Volatility

 Once a model has been developed to measure
 volatility, it is natural to attempt to explain the

 408  JUNE 2004
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 causes of volatility and the effects of volatility
 on the economy. There is now a large literature
 examining aspects of these questions. I will
 only give a discussion of some of the more
 limited findings for financial markets.

 In financial markets, the consequences of vol-
 atility are easy to describe although perhaps
 difficult to measure. In an economy with one
 risky asset, a rise in volatility should lead in-
 vestors to sell some of the asset. If there is a

 fixed supply, the price must fall sufficiently so
 that buyers take the other side. At this new
 lower price, the expected return is higher by just
 enough to compensate investors for the in-
 creased risk. In equilibrium, high volatility
 should correspond to high expected returns.
 Merton (1980) formulated this theoretical
 model in continuous time, and Engle et al.
 (1987) proposed a discrete time model. If the
 price of risk were constant over time, then rising
 conditional variances would translate linearly
 into rising expected returns. Thus the mean of
 the return equation would no longer be esti-
 mated as zero, it would depend upon the past
 squared returns exactly in the same way that the
 conditional variance depends on past squared
 returns. This very strong coefficient restriction
 can be tested and used to estimate the price of
 risk. It can also be used to measure the coeffi-

 cient of relative risk aversion of the representa-
 tive agent under the same assumptions.

 Empirical evidence on this measurement has
 been mixed. While Engle et al. (1987) find a
 positive and significant effect, Ray-Yeutien
 Chou et al. (1992) and Lawrence R. Glosten et
 al. (1993) find a relationship that varies over
 time and may be negative because of omitted
 variables. Kenneth R. French et al. (1987)
 showed that a positive volatility surprise should
 and does have a negative effect on asset prices.
 There is not simply one risky asset in the econ-
 omy and the price of risk is not likely to be
 constant; hence the instability is not surprising
 and does not disprove the existence of the risk
 return trade-off, but it is a challenge to better
 modeling of this trade-off.

 The causes of volatility are more directly
 modeled. Since the basic ARCH model and its

 many variants describe the conditional variance
 as a function of lagged squared returns, these
 are perhaps the proximate causes of volatility. It
 is best to interpret these as observables that help

 in forecasting volatility rather than as causes. If
 the true causes were included in the specifica-
 tion, then the lags would not be needed.

 A small collection of papers has followed this
 route. Torben G. Andersen and Bollerslev
 (1998b) examined the effects of announcements
 on exchange rate volatility. The difficulty in
 finding important explanatory power is clear
 even if these announcements are responsible in
 important ways. Another approach is to use the
 volatility measured in other markets. Engle et
 al. (1990b) find evidence that stock volatility
 causes bond volatility in the future. Engle et al.
 (1990a) model the influence of volatility in mar-
 kets with earlier closing on markets with later
 closing. For example, they examine the influ-
 ence of currency volatilities in European, Asian
 markets, and the prior day U.S. market on to-
 day's U.S. currency volatility. Yasushi Hamao
 et al. (1990), Pat Bums et al. (1998), and others
 have applied similar techniques to global equity
 markets.

 V. An Example

 To illustrate the use of ARCH models for
 financial applications, I will give a rather ex-
 tended analysis of the Standard & Poors 500
 Composite index. This index represents the bulk
 of the value in the U.S. equity market. I will
 look at daily levels of this index from 1963
 through late November 2003. This gives a
 sweep of U.S. financial history that provides an
 ideal setting to discuss how ARCH models are
 used for risk management and option pricing.
 All the statistics and graphs are computed in
 EViewsTM 4.1.

 The raw data are presented in Figure 1 where
 prices are shown on the left axis. The rather
 smooth lower curve shows what has happened
 to this index over the last 40 years. It is easy to
 see the great growth of equity prices over the
 period and the subsequent decline after the new
 millennium. At the beginning of 1963 the index
 was priced at $63 and at the end it was $1,035.
 That means that one dollar invested in 1963
 would have become $16 by November 21, 2003
 (plus the stream of dividends that would have
 been received, as this index does not take ac-
 count of dividends on a daily basis). If this
 investor were clever enough to sell his position
 on March 24, 2000, it would have been worth

 409 VOL. 94 NO. 3
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 FIGURE 1. S&P 500 DAILY PRICES AND RETURNS FROM
 JANUARY 1963 TO NOVEMBER 2003

 $24. Hopefully he was not so unlucky as to have
 purchased on that day. Although we often see
 pictures of the level of these indices, it is obvi-
 ously the relative price from the purchase point
 to the sale point that matters. Thus economists
 focus attention on returns as shown at the top of
 the figure. This shows the daily price change on
 the right axis (computed as the logarithm of the
 price today divided by the price yesterday). This
 return series is centered around zero throughout
 the sample period even though prices are some-
 times increasing and sometimes decreasing.
 Now the most dramatic event is the crash of
 October 1987 which dwarfs all other returns in
 the size of the decline and subsequent partial
 recovery.

 Other important features of this data series
 can be seen best by looking at portions of the
 whole history. For example, Figure 2 shows the
 same graph before 1987. It is very apparent that
 the amplitude of the returns is changing. The
 magnitude of the changes is sometimes large
 and sometimes small. This is the effect that

 ARCH is designed to measure and that we have
 called volatility clustering. There is, however,
 another interesting feature in this graph. It is
 clear that the volatility is higher when prices are
 falling. Volatility tends to be higher in bear
 markets. This is the asymmetric volatility effect
 that Nelson described with his EGARCH
 model.

 Looking at the next subperiod after the 1987
 crash in Figure 3, we see the record low vola-
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 tility period of the middle 1990's. This was
 accompanied by a slow and steady growth of
 equity prices. It was frequently discussed
 whether we had moved permanently to a new
 era of low volatility. History shows that we did
 not. The volatility began to rise as stock prices
 got higher and higher, reaching very high levels
 from 1998 on. Clearly, the stock market was
 risky from this perspective but investors were
 willing to take this risk because the returns were
 so good. Looking at the last period since 1998
 in Figure 4, we see the high volatility continue
 as the market turned down. Only at the end of
 the sample, since the official conclusion of the
 Iraq war, do we see substantial declines in vol-
 atility. This has apparently encouraged inves-
 tors to come back into the market which has

 experienced substantial price increases.
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 TABLE 1-S&P 500 RETURNS

 Sample Full Since 1990

 Mean 0.0003 0.0003
 Standard deviation 0.0094 0.0104
 Skewness -1.44 -0.10
 Kurtosis 41.45 6.78

 We now show some statistics that illustrate

 the three stylized facts mentioned above: almost
 unpredictable returns, fat tails, and volatility
 clustering. Some features of returns are shown
 in Table 1. The mean is close to zero relative to

 the standard deviation for both periods. It is
 0.03 percent per trading day or about 7.8 per-
 cent per year. The standard deviation is slightly
 higher in the 1990's. These standard deviations
 correspond to annualized volatilities of 15 per-
 cent and 17 percent. The skewness is small
 throughout.

 The most interesting feature is the kurtosis
 which measures the magnitude of the extremes.
 If returns are normally distributed, then the kur-
 tosis should be three. The kurtosis of the nine-

 ties is substantial at 6.8, while for the full
 sample it is a dramatic 41. This is strong evi-
 dence that extremes are more substantial than

 would be expected from a normal random vari-
 able. Similar evidence is seen graphically in
 Figure 5, which is a quantile plot for the post-
 1990 data. This is designed to be a straight line
 if returns are normally distributed and will have
 an s-shape if there are more extremes.

 The unpredictability of returns and the clus-

 SPRETURNS

 FIGURE 5. QUANTILE PLOT OF S&P 500 RETURNS
 POST 1990

 tering of volatility can be concisely shown by
 looking at autocorrelations. Autocorrelations
 are correlations calculated between the value of
 a random variable today and its value some days
 in the past. Predictability may show up as sig-
 nificant autocorrelations in returns, and volatil-

 ity clustering will show up as significant
 autocorrelations in squared or absolute returns.
 Figure 6 shows both of these plots for the post-
 1990 data. Under conventional criteria,' auto-
 correlations bigger than 0.033 in absolute value
 would be significant at a 5-percent level.
 Clearly, the return autocorrelations are almost
 all insignificant while the square returns have all
 autocorrelations significant. Furthermore, the
 squared return autocorrelations are all positive,
 which is highly unlikely to occur by chance.
 This figure gives powerful evidence for both the
 unpredictability of returns and the clustering of
 volatility.

 Now we turn to the problem of estimating
 volatility. The estimates called historical vola-
 tility are based on rolling standard deviations of
 returns. In Figure 7 these are constructed for
 five-day, one-year, and five-year windows. While
 each of these approaches may seem reasonable,

 'The actual critical values will be somewhat greater as
 the series clearly are heteroskedastic. This makes the case
 for unpredictability in returns even stronger.
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 FIGURE 7. HISTORICAL VOLATILITIES WITH VARIOUS
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 the answers are clearly very different. The five-
 day estimate is extremely variable while the
 other two are much smoother. The five-year
 estimate smooths over peaks and troughs that
 the other two see. It is particularly slow to
 recover after the 1987 crash and particularly
 slow to reveal the rise in volatility in 1998-
 2000. In just the same way, the annual estimate
 fails to show all the details revealed by the
 five-day volatility. However, some of these de-
 tails may be just noise. Without any true mea-
 sure of volatility, it is difficult to pick from
 these candidates.

 The ARCH model provides a solution to this
 dilemma. From estimating the unknown param-

 eters based on the historical data, we have fore-
 casts for each day in the sample period and for
 any period after the sample. The natural first
 model to estimate is the GARCH(1,1). This
 model gives weights to the unconditional vari-
 ance, the previous forecast, and the news mea-
 sured as the square of yesterday's return. The
 weights are estimated to be (0.004, 0.941,
 0.055), respectively.2 Clearly the bulk of the
 information comes from the previous day fore-
 cast. The new information changes this a little
 and the long-run average variance has a very
 small effect. It appears that the long-run vari-
 ance effect is so tiny that it might not be im-
 portant. This is incorrect. When forecasting
 many steps ahead, the long-run variance even-
 tually dominates as the importance of news and
 other recent information fades away. It is natu-
 rally small because of the use of daily data.

 In this example, we will use an asymmetric
 volatility model that is sometimes called GJR-
 GARCH for Glosten et al. (1993) or TARCH
 for Threshold ARCH (Jean Michael Zakoian,
 1994). The statistical results are given in Table
 2. In this case there are two types of news.
 There is a squared return and there is a variable
 that is the squared return when returns are neg-
 ative, and zero otherwise. On average, this is

 2 For a conventional GARCH model defined as ht+1 -I
 o + ar2 + P3ht, the weights are ((1 - a - 3), 3, a).
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 TABLE 2-TARCH ESTIMATES OF S&P 500 RETURN DATA

 Dependent variable: NEWRET_SP
 Method: ML-ARCH (Marquardt)
 Date: 11/24/03 Time: 09:27

 Sample (adjusted): 1/03/1963-11/21/2003
 Included observations: 10,667 after adjusting endpoints
 Convergence achieved after 22 iterations
 Variance backcast: ON

 C

 C

 ARCH(1)
 (RESID < 0)*ARCH(1)
 GARCH(1)

 Coefficient

 0.000301

 Variance equation

 4.55E-07

 0.028575
 0.076169
 0.930752

 Standard error z-statistic Probability

 6.67E-05 4.512504 0.0000

 5.06E-08
 0.003322

 0.003821
 0.002246

 8.980473
 8.602582
 19.93374

 414.4693

 0.0000
 0.0000

 0.0000
 0.0000

 1.4

 1.2 -

 1.0 -

 0.8-

 0.6-
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 FIGURE 8. GARCH VOLATILITIES

 half as big as the variance, so it must be doubled
 implying that the weights are half as big. The
 weights are now computed on the long-run av-
 erage, the previous forecast, the symmetric
 news, and the negative news. These weights are
 estimated to be (0.002, 0.931, 0.029, 0.038)
 respectively.3 Clearly the asymmetry is impor-
 tant since the last term would be zero otherwise.

 In fact, negative returns in this model have more
 than three times the effect of positive returns on
 future variances. From a statistical point of
 view, the asymmetry term has a t-statistic of
 almost 20 and is very significant.

 The volatility series generated by this model
 is given in Figure 8. The series is more jagged

 3 If the model is defined as ht = wo +- h_ + ar_ +
 -y t_It_l<0, then the weights are (1 - a - - y/2, 3, a,
 y/2).

 0.10 ,,
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 FIGURE 9. GARCH CONFIDENCE INTERVALS: THREE
 STANDARD DEVIATIONS

 than the annual or five-year historical volatili-
 ties, but is less variable than the five-day vola-
 tilities. Since it is designed to measure the
 volatility of returns on the next day, it is natural
 to form confidence intervals for returns. In Fig-
 ure 9 returns are plotted against plus and minus
 three TARCH standard deviations. Clearly the
 confidence intervals are changing in a very be-
 lievable fashion. A constant band would be too

 wide in some periods and too narrow in others.
 The TARCH intervals should have 99.7-percent
 probability of including the next observation if
 the data are really normally distributed. The
 expected number of times that the next return is
 outside the interval should then be only 29 out
 of the more than 10,000 days. In fact, there are
 75 indicating that there are more outliers than
 would be expected from normality.

 Additional information about volatility is
 available from the options market. The value of

 413 VOL. 94 NO. 3
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 FIGURE 10. IMPLIED VOLATILITIES AND GARCH
 VOLATILITIES

 traded options depends directly on the volatility
 of the underlying asset. A carefully constructed
 portfolio of options with different strikes will
 have a value that measures the option market
 estimate of future volatility under rather weak
 assumptions. This calculation is now performed
 by the CBOE for S&P 500 options and is re-
 ported as the VIX. Two assumptions that un-
 derlie this index are worth mentioning. The
 price process should be continuous and there
 should be no risk premia on volatility shocks. If
 these assumptions are good approximations,
 then implied volatilities can be compared with
 ARCH volatilities. Because the VIX represents
 the volatility of one-month options, the TARCH
 volatilities must be forecast out to one month.

 The results are plotted in Figure 10. The
 general pattern is quite similar, although the
 TARCH is a little lower than the VIX. These
 differences can be attributed to two sources.

 First, the option pricing relation is not quite
 correct for this situation and does not allow for

 volatility risk premia or nonnormal returns.
 These adjustments would lead to higher options
 prices and consequently implied volatilities that
 were too high. Second, the basic ARCH models
 have very limited information sets. They do not
 use information on earnings, wars, elections,
 etc. Hence the volatility forecasts by traders
 should be generally superior; differences could
 be due to long-lasting information events.

 This extended example illustrates many of
 the features of ARCH/GARCH models and how

 they can be used to study volatility processes.
 We turn now to financial practice and describe

 two widely used applications. In the presenta-
 tion, some novel implications of asymmetric
 volatility will be illustrated.

 VI. Financial Practice-Value at Risk

 Every morning in thousands of banks and
 financial services institutions around the world,
 the Chief Executive Officer is presented with a
 risk profile by his Risk Management Officer. He
 is given an estimate of the risk of the entire
 portfolio and the risk of many of its compo-
 nents. He would typically learn the risk faced by
 the firm's European Equity Division, its U.S.
 Treasury Bond Division, its Currency Trading
 Unit, its Equity Derivative Unit, and so forth.
 These risks may even be detailed for particular
 trading desks or traders. An overall figure is
 then reported to a regulatory body although it
 may not be the same number used for internal
 purposes. The risk of the company as a whole is
 less than the sum of its parts since different
 portions of the risk will not be perfectly
 correlated.

 The typical measure of each of these risks is
 Value at Risk, often abbreviated as VaR. The
 VaR is a way of measuring the probability of
 losses that could occur to the portfolio. The
 99-percent one-day VaR is a number of dollars
 that the manager is 99 percent certain will be
 worse than whatever loss occurs on the next

 day. If the one-day VaR for the currency desk is
 $50,000, then the risk officer asserts that only
 on one day out of 100 will losses on this port-
 folio be greater than $50,000. Of course this
 means that on about 2.5 days a year, the losses
 will exceed the VaR. The VaR is a measure of

 risk that is easy to understand without knowing
 any statistics. It is, however, just one quantile
 of the predictive distribution and therefore it
 has limited information on the probabilities of
 loss.

 Sometimes the VaR is defined on a multi-day
 basis. A 99-percent ten-day VaR is a number of
 dollars that is greater than the realized loss over
 ten days on the portfolio with probability 0.99.
 This is a more common regulatory standard but
 is typically computed by simply adjusting the
 one-day VaR as will be discussed below. The
 loss figures assume that the portfolio is un-
 changed over the ten-day period which may be
 counterfactual.
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 To calculate the VaR of a trading unit or a
 firm as a whole, it is necessary to have variances
 and covariances, or equivalently volatilities and
 correlations, among all assets held in the port-
 folio. Typically, the assets are viewed as re-
 sponding primarily to one or more risk factors
 that are modeled directly. RiskmetricsTM, for
 example, uses about 400 global risk factors.
 BARRA uses industry risk factors as well as
 risk factors based on firm characteristics and

 other factors. A diversified U.S. equity portfolio
 would have risks determined primarily by the
 aggregate market index such as the S&P 500.
 We will carry forward the example of the pre-
 vious section to calculate the VaR of a portfolio
 that mimics the S&P.

 The one-day 99-percent VaR of the S&P can
 be estimated using ARCH. From historical data,
 the best model is estimated, and then the stan-
 dard deviation is calculated for the following
 day. In the case of S&P on November 24, this
 forecast standard deviation is 0.0076. To con-

 vert this into VaR we must make an assumption
 about the distribution of returns. If normality is
 assumed, the 1 percent point is -2.33 standard
 deviations from zero. Thus the value at risk is
 2.33 times the standard deviation or in the case

 of November 24, it is 1.77 percent. We can be
 99 percent sure that we will not lose more than
 1.77 percent of portfolio value on November 24.
 In fact the market went up on the 24th so there
 were no losses.

 The assumption of normality is highly ques-
 tionable. We observed that financial returns

 have a surprising number of large returns. If we
 divide the returns by the TARCH standard de-
 viations, the result will have a constant volatil-
 ity of one but will have a nonnormal
 distribution. The kurtosis of these "devolatized

 returns," or "standardized residuals," is 6.5,
 which is much less than the unconditional kur-

 tosis, but is still well above normal. From these
 devolatized returns, we can find the 1-percent
 quantile and use this to give a better idea of the
 VaR. It turns out to be 2.65 standard deviations

 below the mean. Thus our portfolio is riskier
 than we thought using the normal approxima-
 tion. The one-day 99-percent VaR is now esti-
 mated to be 2 percent.

 A ten-day value at risk is often required by
 regulatory agencies and is frequently used
 internally as well. Of course, the amount a

 portfolio can lose in ten days is a lot greater
 than it can lose in one day. But how much
 greater is it? If volatilities were constant, then
 the answer would be simple; it would be the
 square root of ten times as great. Since the
 ten-day variance is ten times the one-day vari-
 ance, the ten-day volatility multiplier would
 be the square root of ten. We would take the
 one-day standard deviation and multiply it by
 3.16 and then with normality we would mul-
 tiply this by 2.33, giving 7.36 times the stan-
 dard deviation. This is the conventional
 solution in industry practice. For November
 24, the ten-day 99-percent VaR is 5.6 percent
 of portfolio value.

 However, this result misses two important
 features of dynamic volatility models. First, it
 makes a difference whether the current volatil-

 ities are low or high relative to the long-run
 average, so that they are forecast to increase or
 decrease over the next ten days. Since the vol-
 atility is relatively low in November, the
 TARCH model will forecast an increase over

 the next ten days. In this case, this effect is not
 very big as the standard deviation is forecast to
 increase to 0.0077 from 0.0076 over the ten-day
 period.

 More interesting is the effect of asymmetry in
 variance for multi-period returns. Even though
 each period has a symmetric distribution, the
 multi-period return distribution will be asym-
 metric. This effect is simple to understand but
 has not been widely recognized. It is easily
 illustrated with a two-step binomial tree, Figure
 11, as used in elementary option pricing models.
 In the first period, the asset price can either
 increase or decrease and each outcome is

 equally likely. In the second period, the vari-
 ance will depend upon whether the price went
 up or down. If it went up, then the variance will
 be lower so that the binomial branches will be
 relatively close together. If the price went down,
 the variance will be higher so that the outcomes
 will be further apart. After two periods, there
 are four outcomes that are equally likely. The
 distribution is quite skewed, since the bad out-
 come is far worse than if the variance had been
 constant.

 To calculate the VaR in this setting, a simu-
 lation is needed. The TARCH model is simu-
 lated for ten days using normal random
 variables and starting from the values of
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 Low

 variance

 High
 variance

 FIGURE 11. TWO-PERIOD BINOMIAL TREE WITH
 ASYMMETRIC VOLATILITY

 November 21.4 This was done 10,000 times and
 then the worst outcomes were sorted to find the

 Value at Risk corresponding to the 1-percent
 quantile. The answer was 7.89 times the stan-
 dard deviation. This VaR is substantially larger
 than the value assuming constant volatility.

 To avoid the normality assumption, the simu-
 lation can also be done using the empirical dis-
 tribution of the standardized residuals. This

 simulation is often called a bootstrap; each draw
 of the random variables is equally likely to be any
 observation of the standardized residuals. The Oc-
 tober 1987 crash observation could be drawn once
 or even twice in some simulations but not in

 others. The result is a standard deviation multiplier
 of 8.52 that should be used to calculate VaR. For

 our case, the November 24 ten-day 99-percent
 VaR is 6.5 percent of portfolio value.

 VII. Financial Practice-Valuing Options

 Another important area of financial practice
 is valuation and management of derivatives

 4 In the example here, the simulation was started at the
 unconditional variance so that the time aggregation effect
 could be examined alone. In addition, the mean was taken to be
 zero but this makes little difference over such short horizons.

 such as options. These are typically valued the-
 oretically assuming some particular process for
 the underlying asset and then market prices of
 the derivatives are used to infer the parameters
 of the underlying process. This strategy is often
 called "arbitrage free pricing." It is inadequate
 for some of the tasks of financial analysis. It
 cannot determine the risk of a derivative posi-
 tion since each new market price may corre-
 spond to a different set of parameters and it is
 the size and frequency of these parameter changes
 that signify risk. For the same reason, it is
 difficult to find optimal hedging strategies. Fi-
 nally, there is no way to determine the price of
 a new issue or to determine whether some de-

 rivatives are trading at discounts or premiums.
 A companion analysis that is frequently car-

 ried out by derivatives traders is to develop
 fundamental pricing models that determine the
 appropriate price for a derivative based on the
 observed characteristics of the underlying asset.
 These models could include measures of trading
 cost, hedging cost, and risk in managing the
 options portfolio.

 In this section, a simple simulation-based op-
 tion pricing model will be employed to illustrate
 the use of ARCH models in this type of funda-
 mental analysis. The example will be the pric-
 ing of put options on the S&P 500 that have ten
 trading days left to maturity.

 A put option gives the owner the right to sell
 an asset at a particular price, called the strike
 price, at maturity. Thus if the asset price is
 below the strike, he can make money by selling
 at the strike and buying at the market price. The
 profit is the difference between these prices. If,
 however, the market price is above the strike,
 then there is no value in the option. If the
 investor holds the underlying asset in a portfolio
 and buys a put option, he is guaranteed to have
 at least the strike price at the maturity date. This
 is why these options can be thought of as insur-
 ance contracts.

 The simulation works just as in the previous
 section. The TARCH model is simulated from

 the end of the sample period, 10,000 times. The
 bootstrap approach is taken so that nonnormal-
 ity is already incorporated in the simulation.
 This simulation should be of the "risk-neutral"

 distribution, i.e., the distribution in which assets
 are priced at their discounted expected values.
 The risk-neutral distribution differs from the
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 FIGURE 12. PUT PRICES FROM GARCH SIMULATION

 empirical distribution in subtle ways so that
 there is an explicit risk premium in the empiri-
 cal distribution which is not needed in the risk
 neutral. In some models such as the Black-

 Scholes, it is sufficient to adjust the mean to be
 the risk-free rate. In the example, we take this
 route. The distribution is simulated with a mean

 of zero, which is taken to be the risk-free rate.
 As will be discussed below, this may not be a
 sufficient adjustment to risk-neutralize the
 distribution.

 From the simulation, we have 10,000 equally
 likely outcomes for ten days in the future. For
 each of these outcomes we can compute the
 value of a particular put option. Since these are
 equally likely and since the riskless rate is taken
 to be zero, the fair value of the put option is the
 average of these values. This can be done for
 put options with different strikes. The result is
 plotted in Figure 12. The S&P is assumed to
 begin at 1,000 so a put option with a strike of
 990 protects this value for ten days. This put
 option should sell for $11. To protect the port-
 folio at its current value would cost $15 and to
 be certain that it was at least worth 1,010 would

 cost $21. The VaR calculated in the previous
 section was $65 for the ten-day horizon. To
 protect the portfolio at this point would cost
 around $2. These put prices have the expected
 shape; they are monotonically increasing and
 convex.

 However, these put prices are clearly differ-
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 FIGURE 13. IMPLIED VOLATILITIES FROM GARCH
 SIMULATION

 ent from those generated by the Black-Scholes
 model. This is easily seen by calculating the
 implied volatility for each of these put options.
 The result is shown in Figure 13. The implied
 volatilities are higher for the out-of-the-money
 puts than they are for the at-the-money puts; and
 the in-the-money put volatilities are even lower.
 If the put prices were generated by the Black-
 Scholes model, these implied volatilities would
 all be the same. This plot of implied volatilities
 against strike is a familiar feature for options
 traders. The downward slope is called a "vola-
 tility skew" and corresponds to a skewed distri-
 bution of the underlying assets. This feature is
 very pronounced for index options, less so for
 individual equity options, and virtually nonex-
 istent for currencies, where it is called a
 "smile." It is apparent that this is a consequence
 of the asymmetric volatility model and corre-
 spondingly, the asymmetry is not found for cur-
 rencies and is weaker for individual equity
 options than for indices.

 This feature of options prices is strong con-
 firmation of asymmetric volatility models. Un-
 fortunately, the story is more complicated than
 this. The actual options skew is generally some-
 what steeper than that generated by asymmetric
 ARCH models. This calls into question the risk
 neutralization adopted in the simulation. There
 is now increasing evidence that investors are

 F-

 a-

 u. 10,;

 U. I'l'. -- I
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 particularly worried about big losses and are
 willing to pay extra premiums to avoid them.
 This makes the skew even steeper. The required
 risk neutralization has been studied by several
 authors such as Jens C. Jackwerth (2000),
 Joshua V. Rosenberg and Engle (2002), and
 David S. Bates (2003).

 VIII. New Frontiers

 It has now been more than 20 years since the
 ARCH paper appeared. The developments and
 applications have been fantastic and well be-
 yond anyone's most optimistic forecasts. But
 what can we expect in the future? What are the
 next frontiers?

 There appear to be two important frontiers of
 research that are receiving a great deal of atten-
 tion and have important promise for applica-
 tions. These are high-frequency volatility
 models and high-dimension multivariate mod-
 els. I will give a short description of some of the
 promising developments in these areas.

 Merton was perhaps the first to point out the
 benefits of high-frequency data for volatility
 measurement. By examining the behavior of
 stock prices on a finer and finer time scale,
 better and better measures of volatility can be
 achieved. This is particularly convenient if vol-
 atility is only slowly changing so that dynamic
 considerations can be ignored. Andersen and
 Bollerslev (1998a) pointed out that intra-daily
 data could be used to measure the performance
 of daily volatility models. Andersen et al.
 (2003) and Engle (2002b) suggest how intra-
 daily data can be used to form better daily
 volatility forecasts.

 However, the most interesting question is
 how to use high-frequency data to form high-
 frequency volatility forecasts. As higher and
 higher frequency observations are used, there is
 apparently a limit where every transaction is
 observed and used. Engle (2000) calls such data
 ultra high frequency data. These transactions
 occur at irregular intervals rather than equally
 spaced times. In principle, one can design a
 volatility estimator that would update the vola-
 tility every time a trade was recorded. However,
 even the absence of a trade could be information

 useful for updating the volatility so even more
 frequent updating could be done. Since the time

 at which trades arrive is random, the formula-
 tion of ultra high frequency volatility models
 requires a model of the arrival process of trades.
 Engle and Jeffrey R. Russell (1998) propose the
 Autoregressive Conditional Duration or ACD
 model for this task. It is a close relative of

 ARCH models designed to detect clustering of
 trades or other economic events; it uses this
 information to forecast the arrival probability of
 the next event.

 Many investigators in empirical market mi-
 crostructure are now studying aspects of finan-
 cial markets that are relevant to this problem. It
 turns out that when trades are clustered, the
 volatility is higher. Trades themselves carry in-
 formation that will move prices. A large or
 medium-size buyer will raise prices, at least
 partly because market participants believe he
 could have important information that the stock
 is undervalued. This effect is called price im-
 pact and is a central component of liquidity risk,
 and a key feature of volatility for ultra high
 frequency data. It is also a central concern for
 traders who do not want to trade when they will
 have a big impact on prices, particularly if this
 is just a temporary impact. As financial markets
 become ever more computer driven, the speed
 and frequency of trading will increase. Methods
 to use this information to better understand the

 volatility and stability of these markets will be
 ever more important.

 The other frontier that I believe will see sub-

 stantial development and application is high-
 dimension systems. In this presentation, I have
 focused on the volatility of a single asset. For
 most financial applications, there are thousands
 of assets. Not only do we need models of their
 volatilities but also of their correlations. Ever

 since the original ARCH model was published
 there have been many approaches proposed for
 multivariate systems. However, the best method
 to do this has not yet been discovered. As the
 number of assets increase, the models become
 extremely difficult to accurately specify and
 estimate. Essentially there are too many possi-
 bilities. There are few published examples of
 models with more than five assets. The most
 successful model for these cases is the constant

 conditional correlation model, CCC, of Boller-
 slev (1990). This estimator achieves its perfor-
 mance by assuming that the conditional
 correlations are constant. This allows the vari-
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 ances and covariances to change but not the
 correlations.

 A generalization of this approach is the Dy-
 namic Conditional Correlation, DCC, model of
 Engle (2002a). This model introduces a small
 number of parameters to model the correlations,
 regardless of the number of assets. The volatil-
 ities are modeled with univariate specifications.
 In this way, large covariance matrices can be
 forecast. The investigator first estimates the vol-
 atilities one at a time, and then estimates the
 correlations jointly with a small number of ad-
 ditional parameters. Preliminary research on
 this class of models is promising. Systems of up
 to 100 assets have been modeled with good
 results. Applications to risk management and
 asset allocation follow immediately. Many re-
 searchers are already developing related models
 that could have even better performance. It is
 safe to predict that in the next several years, we
 will have a set of useful methods for modeling
 the volatilities and correlations of large systems
 of assets.
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