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Risk and Volatility: Econometric Models and Financial Practice’

By ROBERT ENGLE*

The advantage of knowing about risks is that
we can change our behavior to avoid them. Of
course, it is easily observed that to avoid all
risks would be impossible; it might entail no
flying, no driving, no walking, eating and drink-
ing only healthy foods, and never being touched
by sunshine. Even a bath could be dangerous. I
could not receive this prize if I sought to avoid
all risks. There are some risks we choose to take
because the benefits from taking them exceed
the possible costs. Optimal behavior takes risks
that are worthwhile. This is the central para-
digm of finance; we must take risks to achieve
rewards but not all risks are equally rewarded.
Both the risks and the rewards are in the future,
so it is the expectation of loss that is balanced
against the expectation of reward. Thus we op-
timize our behavior, and in particular our port-
folio, to maximize rewards and minimize risks.

This simple concept has a long history in
economics and in Nobel citations. Harry M.
Markowitz (1952) and James Tobin (1958) as-
sociated risk with the variance in the value of a
portfolio. From the avoidance of risk they de-
rived optimizing portfolio and banking behav-
ior. William Sharpe (1964) developed the
implications when all investors follow the same
objectives with the same information. This the-
ory is called the Capital Asset Pricing Model or
CAPM, and shows that there is a natural rela-

" This article is a revised version of the lecture Robert
Engle delivered in Stockholm, Sweden, on December 8,
2003, when he received the Bank of Sweden Prize in Eco-
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here with the permission of the Nobel Foundation.
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tion between expected returns and variance.
These contributions were recognized by Nobel
prizes in 1981 and 1990.

Fisher Black and Myron Scholes (1972) and
Robert C. Merton (1973) developed a model to
evaluate the pricing of options. While the theory
is based on option replication arguments
through dynamic trading strategies, it is also
consistent with the CAPM. Put options give the
owner the right to sell an asset at a particular
price at a time in the future. Thus these options
can be thought of as insurance. By purchasing
such put options, the risk of the portfolio can be
completely eliminated. But what does this in-
surance cost? The price of protection depends
upon the risks and these risks are measured by
the variance of the asset returns. This contribu-
tion was recognized by a 1997 Nobel prize.

When practitioners implemented these finan-
cial strategies, they required estimates of the
variances. Typically the square root of the vari-
ance, called the volatility, was reported. They
immediately recognized that the volatilities
were changing over time. They found different
answers for different time periods. A simple
approach, sometimes called historical volatility,
was, and remains, widely used. In this method,
the volatility is estimated by the sample stan-
dard deviation of returns over a short period.
But, what is the right period to use? If it is too
long, then it will not be so relevant for today
and if it is too short, it will be very noisy.
Furthermore, it is really the volatility over a
future period that should be considered the risk,
hence a forecast of volatility is needed as well
as a measure for today. This raises the possibil-
ity that the forecast of the average volatility
over the next week might be different from the
forecast over a year or a decade. Historical
volatility had no solution for these problems.

On a more fundamental level, it is logically
inconsistent to assume, for example, that the
variance is constant for a period such as one
year ending today and also that it is constant for
the year ending on the previous day but with a
different value. A theory of dynamic volatilities
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is needed; this is the role that is filled by the
ARCH models and their many extensions that
we discuss today.

In the next section, I will describe the genesis
of the ARCH model, and then discuss some of
its many generalizations and widespread empir-
ical support. In subsequent sections, I will show
how this dynamic model can be used to forecast
volatility and risk over a long horizon and how
it can be used to value options.

I. The Birth of the ARCH Model

The ARCH model was invented while I was
on sabbatical at the London School of Econom-
ics in 1979. Lunch in the Senior Common
Room with David Hendry, Dennis Sargan, Jim
Durbin, and many leading econometricians pro-
vided a stimulating environment. I was looking
for a model that could assess the validity of a
conjecture of Milton Friedman (1977) that the
unpredictability of inflation was a primary
cause of business cycles. He hypothesized that
the level of inflation was not a problem; it was
the uncertainty about future costs and prices that
would prevent entrepreneurs from investing and
lead to a recession. This could only be plausible
if the uncertainty were changing over time so
this was my goal. Econometricians call this
heteroskedasticity. I had recently worked exten-
sively with the Kalman Filter and knew that a
likelihood function could be decomposed into
the sum of its predictive or conditional densi-
ties. Finally, my colleague, Clive Granger, with
whom I share this prize, had recently developed
a test for bilinear time series models based on
the dependence over time of squared residuals.
That is, squared residuals often were autocorre-
lated even though the residuals themselves were
not. This test was frequently significant in eco-
nomic data; I suspected that it was detecting
something besides bilinearity but I did not know
what.

The solution was autoregressive conditional
heteroskedasticity or ARCH, a name invented
by David Hendry. The ARCH model described
the forecast variance in terms of current observ-
ables. Instead of using short or long sample
standard deviations, the ARCH model proposed
taking weighted averages of past squared fore-
cast errors, a type of weighted variance. These
weights could give more influence to recent
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information and less to the distant past. Clearly
the ARCH model was a simple generalization of
the sample variance.

The big advance was that the weights could
be estimated from historical data even though
the true volatility was never observed. Here is
how this works. Forecasts can be calculated
every day or every period. By examining these
forecasts for different weights, the set of
weights can be found that make the forecasts
closest to the variance of the next return. This
procedure, based on Maximum Likelihood,
gives a systematic approach to the estimation of
the optimal weights. Once the weights are de-
termined, this dynamic model of time-varying
volatility can be used to measure the volatility at
any time and to forecast it into the near and
distant future. Granger’s test for bilinearity
turned out to be the optimal, or Lagrange Mul-
tiplier test for ARCH, and is widely used today.

There are many benefits to formulating an
explicit dynamic model of volatility. As men-
tioned above, the optimal parameters can be
estimated by Maximum Likelihood. Tests of the
adequacy and accuracy of a volatility model can
be used to verify the procedure. One-step and
multi-step forecasts can be constructed using
these parameters. The unconditional distribu-
tions can be established mathematically and are
generally realistic. Inserting the relevant vari-
ables into the model can test economic models
that seek to determine the causes of volatility.
Incorporating additional endogenous variables
and equations can similarly test economic mod-
els about the consequences of volatility. Several
applications will be mentioned below.

David Hendry’s associate, Frank Srba, wrote
the first ARCH program. The application that
appeared in Engle (1982) was to inflation in the
United Kingdom since this was Friedman’s
conjecture. While there was plenty of evidence
that the uncertainty in inflation forecasts was
time varying, it did not correspond to the U.K.
business cycle. Similar tests for U.S. inflation
data, reported in Engle (1983), confirmed the
finding of ARCH but found no business-cycle
effect. While the trade-off between risk and
return is an important part of macroeconomic
theory, the empirical implications are often dif-
ficult to detect as they are disguised by other
dominating effects, and obscured by the reli-
ance on relatively low-frequency data. In fi-
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nance, the risk/return effects are of primary
importance and data on daily or even intradaily
frequencies are readily available to form accu-
rate volatility forecasts. Thus finance is the field
in which the great richness and variety of
ARCH models developed.

II. Generalizing the ARCH Model

Generalizations to different weighting
schemes can be estimated and tested. The very
important development by my outstanding stu-
dent Tim Bollerslev (1986), called Generalized
Autoregressive Conditional Heteroskedasticity,
or GARCH, is today the most widely used
model. This essentially generalizes the purely
autoregressive ARCH model to an autoregres-
sive moving average model. The weights on
past squared residuals are assumed to decline
geometrically at a rate to be estimated from the
data. An intuitively appealing interpretation of
the GARCH(1,1) model is easy to understand.
The GARCH forecast variance is a weighted
average of three different variance forecasts.
One is a constant variance that corresponds to
the long-run average. The second is the forecast
that was made in the previous period. The third
is the new information that was not available
when the previous forecast was made. This
could be viewed as a variance forecast based on
one period of information. The weights on these
three forecasts determine how fast the variance
changes with new information and how fast it
reverts to its long-run mean.

A second enormously important generaliza-
tion was the Exponential GARCH or EGARCH
model of Daniel B. Nelson (1991), who prema-
turely passed away in 1995 to the great loss of
our profession as eulogized by Bollerslev and
Peter E. Rossi (1995). In his short academic
career, his contributions were extremely influ-
ential. He recognized that volatility could re-
spond asymmetrically to past forecast errors. In
a financial context, negative returns seemed to
be more important predictors of volatility than
positive returns. Large price declines forecast
greater volatility than similarly large price in-
creases. This is an economically interesting ef-
fect that has wide-ranging implications to be
discussed below.

Further generalizations have been proposed
by many researchers. There is now an alphabet
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soup of ARCH models that include: AARCH,
APARCH, FIGARCH, FIEGARCH, STARCH,
SWARCH, GJR-GARCH, TARCH, MARCH,
NARCH, SNPARCH, SPARCH, SQGARCH,
CESGARCH, Component ARCH, Asymmetric
Component ARCH, Taylor-Schwert, Student-t-
ARCH, GED-ARCH, and many others that I
have regrettably overlooked. Many of these
models were surveyed in Bollerslev et al.
(1992), Bollerslev et al. (1994), Engle (2002b),
and Engle and Isao Ishida (2002). These models
recognize that there may be important nonlin-
earity, asymmetry, and long memory properties
of volatility and that returns can be nonnormal
with a variety of parametric and nonparametric
distributions.

A closely related but econometrically distinct
class of volatility models called Stochastic Vol-
atility, or SV models, have also seen dramatic
development. See, for example, Peter K. Clark
(1973), Stephen Taylor (1986), Andrew C. Har-
vey et al. (1994), and Taylor (1994). These
models have a different data-generating process
which makes them more convenient for some
purposes but more difficult to estimate. In a
linear framework, these models would simply
be different representations of the same process;
but in this nonlinear setting, the alternative
specifications are not equivalent, although they
are close approximations.

I11. Modeling Financial Returns

The success of the ARCH family of models is
attributable in large measure to the applications
in finance. While the models have applicability
for many statistical problems with time series
data, they find particular value for financial time
series. This is partly because of the importance
of the previously discussed trade-off between
risk and return for financial markets, and partly
because of three ubiquitous characteristics of
financial returns from holding a risky asset.
Returns are almost unpredictable, they have sur-
prisingly large numbers of extreme values, and
both the extremes and quiet periods are clus-
tered in time. These features are often described
as unpredictability, fat tails, and volatility clus-
tering. These are precisely the characteristics
for which an ARCH model is designed. When
volatility is high, it is likely to remain high, and
when it is low, it is likely to remain low. However,
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these periods are time limited so that the fore-
cast is sure to eventually revert to less extreme
volatilities. An ARCH process produces dy-
namic, mean-reverting patterns in volatility that
can be forecast. It also produces a greater num-
ber of extremes than would be expected from a
standard normal distribution, since the extreme
values during the high volatility period are
greater than could be anticipated from a con-
stant volatility process.

The GARCH(1,1) specification is the work-
horse of financial applications. It is remarkable
that one model can be used to describe the vola-
tility dynamics of almost any financial return se-
ries. This applies not only to U.S. stocks but also
to stocks traded in most developed markets, to
most stocks traded in emerging markets, and to
most indices of equity returns. It applies to ex-
change rates, bond returns, and commodity re-
turns. In many cases, a slightly better model can
be found in the list of models above, but GARCH
is generally a very good starting point.

The widespread success of GARCH(I,1)
begs to be understood. What theory can explain
why volatility dynamics are similar in so many
different financial markets? In developing such
a theory, we must first understand why asset
prices change. Financial assets are purchased
and owned because of the future payments that
can be expected. Because these payments are
uncertain and depend upon unknowable future
developments, the fair price of the asset will
require forecasts of the distribution of these
payments based on our best information today.
As time goes by, we get more information on
these future events and revalue the asset. So at
a basic level, financial price volatility is due to
the arrival of new information. Volatility clus-
tering is simply clustering of information arriv-
als. The fact that this is common to so many
assets is simply a statement that news is typi-
cally clustered in time.

To see why it is natural for news to be clus-
tered in time, we must be more specific about
the information flow. Consider an event such as
an invention that will increase the value of a
firm because it will improve future earnings and
dividends. The effect on stock prices of this
event will depend on economic conditions in
the economy and in the firm. If the firm is near
bankruptcy, the effect can be very large and if it
is already operating at full capacity, it may be
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small. If the economy has low interest rates and
surplus labor, it may be easy to develop this
new product. With everything else equal, the
response will be greater in a recession than in a
boom period. Hence we are not surprised to find
higher volatility in economic downturns even if
the arrival rate of new inventions is constant.
This is a slow moving type of volatility cluster-
ing that can give cycles of several years or
longer.

The same invention will also give rise to a
high-frequency volatility clustering. When the
invention is announced, the market will not
immediately be able to estimate its value on the
stock price. Agents may disagree but be suffi-
ciently unsure of their valuations that they pay
attention to how others value the firm. If an
investor buys until the price reaches his estimate
of the new value, he may revise his estimate
after he sees others continue to buy at succes-
sively higher prices. He may suspect they have
better information or models and consequently
raise his valuation. Of course, if the others are
selling, then he may revise his price downward.
This process is generally called price discovery
and has been modeled theoretically and empir-
ically in market microstructure. It leads to vol-
atility clustering at a much higher frequency
than we have seen before. This process could
last a few days or a few minutes.

But to understand volatility we must think of
more than one invention. While the arrival rate of
inventions may not have clear patterns, other types
of news surely do. The news intensity is generally
high during wars and economic distress. During
important global summits, congressional or regu-
latory hearings, elections, or central bank board
meetings, there are likely to be many news events.
These episodes are likely to be of medium dura-
tion, lasting weeks or months.

The empirical volatility patterns we observe
are composed of all three of these types of
events. Thus we expect to see rather elaborate
volatility dynamics and often rely on long time
series to give accurate models of the different
time constants.

IV. Modeling the Causes and Consequences of
Financial Volatility

Once a model has been developed to measure
volatility, it is natural to attempt to explain the
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causes of volatility and the effects of volatility
on the economy. There is now a large literature
examining aspects of these questions. I will
only give a discussion of some of the more
limited findings for financial markets.

In financial markets, the consequences of vol-
atility are easy to describe although perhaps
difficult to measure. In an economy with one
risky asset, a rise in volatility should lead in-
vestors to sell some of the asset. If there is a
fixed supply, the price must fall sufficiently so
that buyers take the other side. At this new
lower price, the expected return is higher by just
enough to compensate investors for the in-
creased risk. In equilibrium, high volatility
should correspond to high expected returns.
Merton (1980) formulated this theoretical
model in continuous time, and Engle et al.
(1987) proposed a discrete time model. If the
price of risk were constant over time, then rising
conditional variances would translate linearly
into rising expected returns. Thus the mean of
the return equation would no longer be esti-
mated as zero, it would depend upon the past
squared returns exactly in the same way that the
conditional variance depends on past squared
returns. This very strong coefficient restriction
can be tested and used to estimate the price of
risk. It can also be used to measure the coeffi-
cient of relative risk aversion of the representa-
tive agent under the same assumptions.

Empirical evidence on this measurement has
been mixed. While Engle et al. (1987) find a
positive and significant effect, Ray-Yeutien
Chou et al. (1992) and Lawrence R. Glosten et
al. (1993) find a relationship that varies over
time and may be negative because of omitted
variables. Kenneth R. French et al. (1987)
showed that a positive volatility surprise should
and does have a negative effect on asset prices.
There is not simply one risky asset in the econ-
omy and the price of risk is not likely to be
constant; hence the instability is not surprising
and does not disprove the existence of the risk
return trade-off, but it is a challenge to better
modeling of this trade-off.

The causes of volatility are more directly
modeled. Since the basic ARCH model and its
many variants describe the conditional variance
as a function of lagged squared returns, these
are perhaps the proximate causes of volatility. It
is best to interpret these as observables that help
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in forecasting volatility rather than as causes. If
the true causes were included in the specifica-
tion, then the lags would not be needed.

A small collection of papers has followed this
route. Torben G. Andersen and Bollerslev
(1998b) examined the effects of announcements
on exchange rate volatility. The difficulty in
finding important explanatory power is clear
even if these announcements are responsible in
important ways. Another approach is to use the
volatility measured in other markets. Engle et
al. (1990b) find evidence that stock volatility
causes bond volatility in the future. Engle et al.
(1990a) model the influence of volatility in mar-
kets with earlier closing on markets with later
closing. For example, they examine the influ-
ence of currency volatilities in European, Asian
markets, and the prior day U.S. market on to-
day’s U.S. currency volatility. Yasushi Hamao
et al. (1990), Pat Burns et al. (1998), and others
have applied similar techniques to global equity
markets.

V. An Example

To illustrate the use of ARCH models for
financial applications, I will give a rather ex-
tended analysis of the Standard & Poors 500
Composite index. This index represents the bulk
of the value in the U.S. equity market. I will
look at daily levels of this index from 1963
through late November 2003. This gives a
sweep of U.S. financial history that provides an
ideal setting to discuss how ARCH models are
used for risk management and option pricing.
All the statistics and graphs are computed in
EViews™ 4.1.

The raw data are presented in Figure 1 where
prices are shown on the left axis. The rather
smooth lower curve shows what has happened
to this index over the last 40 years. It is easy to
see the great growth of equity prices over the
period and the subsequent decline after the new
millennium. At the beginning of 1963 the index
was priced at $63 and at the end it was $1,035.
That means that one dollar invested in 1963
would have become $16 by November 21, 2003
(plus the stream of dividends that would have
been received, as this index does not take ac-
count of dividends on a daily basis). If this
investor were clever enough to sell his position
on March 24, 2000, it would have been worth
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FIGURE 1. S&P 500 DAILY PRICES AND RETURNS FROM
JANUARY 1963 TO NOVEMBER 2003

$24. Hopefully he was not so unlucky as to have
purchased on that day. Although we often see
pictures of the level of these indices, it is obvi-
ously the relative price from the purchase point
to the sale point that matters. Thus economists
focus attention on returns as shown at the top of
the figure. This shows the daily price change on
the right axis (computed as the logarithm of the
price today divided by the price yesterday). This
return series is centered around zero throughout
the sample period even though prices are some-
times increasing and sometimes decreasing.
Now the most dramatic event is the crash of
October 1987 which dwarfs all other returns in
the size of the decline and subsequent partial
recovery.

Other important features of this data series
can be seen best by looking at portions of the
whole history. For example, Figure 2 shows the
same graph before 1987. It is very apparent that
the amplitude of the returns is changing. The
magnitude of the changes is sometimes large
and sometimes small. This is the effect that
ARCH is designed to measure and that we have
called volatility clustering. There is, however,
another interesting feature in this graph. It is
clear that the volatility is higher when prices are
falling. Volatility tends to be higher in bear
markets. This is the asymmetric volatility effect
that Nelson described with his EGARCH
model.

Looking at the next subperiod after the 1987
crash in Figure 3, we see the record low vola-
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tility period of the middle 1990’s. This was
accompanied by a slow and steady growth of
equity prices. It was frequently discussed
whether we had moved permanently to a new
era of low volatility. History shows that we did
not. The volatility began to rise as stock prices
got higher and higher, reaching very high levels
from 1998 on. Clearly, the stock market was
risky from this perspective but investors were
willing to take this risk because the returns were
so good. Looking at the last period since 1998
in Figure 4, we see the high volatility continue
as the market turned down. Only at the end of
the sample, since the official conclusion of the
Iraq war, do we see substantial declines in vol-
atility. This has apparently encouraged inves-
tors to come back into the market which has
experienced substantial price increases.
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TABLE 1—S&P 500 RETURNS
Sample Full Since 1990
Mean 0.0003 0.0003
Standard deviation 0.0094 0.0104
Skewness —1.44 -0.10
Kurtosis 41.45 6.78

We now show some statistics that illustrate
the three stylized facts mentioned above: almost
unpredictable returns, fat tails, and volatility
clustering. Some features of returns are shown
in Table 1. The mean is close to zero relative to
the standard deviation for both periods. It is
0.03 percent per trading day or about 7.8 per-
cent per year. The standard deviation is slightly
higher in the 1990’s. These standard deviations
correspond to annualized volatilities of 15 per-
cent and 17 percent. The skewness is small
throughout.

The most interesting feature is the kurtosis
which measures the magnitude of the extremes.
If returns are normally distributed, then the kur-
tosis should be three. The kurtosis of the nine-
ties is substantial at 6.8, while for the full
sample it is a dramatic 41. This is strong evi-
dence that extremes are more substantial than
would be expected from a normal random vari-
able. Similar evidence is seen graphically in
Figure 5, which is a quantile plot for the post-
1990 data. This is designed to be a straight line
if returns are normally distributed and will have
an s-shape if there are more extremes.

The unpredictability of returns and the clus-

Normal Quantile

-2
-3 . o
-4 ° T T T
-0.08 -0.04 0.00 0.04 0.08
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FIGURE 5. QUANTILE PLOT OF S&P 500 RETURNS
PosT 1990

tering of volatility can be concisely shown by
looking at autocorrelations. Autocorrelations
are correlations calculated between the value of
a random variable today and its value some days
in the past. Predictability may show up as sig-
nificant autocorrelations in returns, and volatil-
ity clustering will show up as significant
autocorrelations in squared or absolute returns.
Figure 6 shows both of these plots for the post-
1990 data. Under conventional criteria,' auto-
correlations bigger than 0.033 in absolute value
would be significant at a 5-percent level.
Clearly, the return autocorrelations are almost
all insignificant while the square returns have all
autocorrelations significant. Furthermore, the
squared return autocorrelations are all positive,
which is highly unlikely to occur by chance.
This figure gives powerful evidence for both the
unpredictability of returns and the clustering of
volatility.

Now we turn to the problem of estimating
volatility. The estimates called historical vola-
tility are based on rolling standard deviations of
returns. In Figure 7 these are constructed for
five-day, one-year, and five-year windows. While
each of these approaches may seem reasonable,

! The actual critical values will be somewhat greater as
the series clearly are heteroskedastic. This makes the case
for unpredictability in returns even stronger.
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the answers are clearly very different. The five-
day estimate is extremely variable while the
other two are much smoother. The five-year
estimate smooths over peaks and troughs that
the other two see. It is particularly slow to
recover after the 1987 crash and particularly
slow to reveal the rise in volatility in 1998 -
2000. In just the same way, the annual estimate
fails to show all the details revedled by the
five-day volatility. However, some of these de-
tails may be just noise. Without any true mea-
sure of volatility, it is difficult to pick from
these candidates.

The ARCH model provides a solution to this
dilemma. From estimating the unknown param-

eters based on the historical data, we have fore-
casts for each day in the sample period and for
any period after the sample. The natural first
model to estimate is the GARCH(1,1). This
model gives weights to the unconditional vari-
ance, the previous forecast, and the news mea-
sured as the square of yesterday’s return. The
weights are estimated to be (0.004, 0.941,
0.055), respectively.” Clearly the bulk of the
information comes from the previous day fore-
cast. The new information changes this a little
and the long-run average variance has a very
small effect. It appears that the long-run vari-
ance effect is so tiny that it might not be im-
portant. This is incorrect. When forecasting
many steps ahead, the long-run variance even-
tually dominates as the importance of news and
other recent information fades away. It is natu-
rally small because of the use of daily data.

In this example, we will use an asymmetric
volatility model that is sometimes called GJR-
GARCH for Glosten et al. (1993) or TARCH
for Threshold ARCH (Jean Michael Zakoian,
1994). The statistical results are given in Table
2. In this case there are two types of news.
There is a squared return and there is a variable
that is the squared return when returns are neg-
ative, and zero otherwise. On average, this is

2 For a conventional GARCH model defined as #,, , =
o + ar? + Bh,, the weights are (1 — a — B), B, ).
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TABLE 2—TARCH ESTIMATES OF S&P 500 RETURN DATA

Dependent variable: NEWRET_SP

Method: ML—ARCH (Marquardt)

Date: 11/24/03 Time: 09:27

Sample (adjusted): 1/03/1963-11/21/2003

Included observations: 10,667 after adjusting endpoints
Convergence achieved after 22 iterations

Variance backcast: ON

Coefficient Standard error  z-statistic ~ Probability
C 0.000301 6.67E-05 4.512504 0.0000
Variance equation
C 4.55E-07 5.06E-08 8.980473 0.0000
ARCH(I) 0.028575 0.003322 8.602582 0.0000
(RESID < 0)*ARCH(1) 0.076169 0.003821 19.93374 0.0000
GARCH(1) 0.930752 0.002246 414.4693 0.0000
14 0.10.
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FIGURE 8. GARCH VOLATILITIES

half as big as the variance, so it must be doubled
implying that the weights are half as big. The
weights are now computed on the long-run av-
erage, the previous forecast, the symmetric
news, and the negative news. These weights are
estimated to be (0.002, 0.931, 0.029, 0.038)
respectively.® Clearly the asymmetry is impor-
tant since the last term would be zero otherwise.
In fact, negative returns in this model have more
than three times the effect of positive returns on
future variances. From a statistical point of
view, the asymmetry term has a z-statistic of
almost 20 and is very significant.

The volatility series generated by this model
is given in Figure 8. The series is more jagged

3 If the model is defined as b, = @ + Bh,_, + ar’_, +
yri_il,_ <o then the weights are (1 ~ o — B — ¥/2, B, a,
v/2).

[ 3'GARCHSTD  —— SPRETURNS -3'GARCHSTD |

FIGURE 9. GARCH CONFIDENCE INTERVALS: THREE
STANDARD DEVIATIONS

than the annual or five-year historical volatili-
ties, but is less variable than the five-day vola-
tilities. Since it is designed to measure the
volatility of returns on the next day, it is natural
to form confidence intervals for returns. In Fig-
ure 9 returns are plotted against plus and minus
three TARCH standard deviations. Clearly the
confidence intervals are changing in a very be-
lievable fashion. A constant band would be too
wide in some periods and too narrow in others.
The TARCH intervals should have 99.7-percent
probability of including the next observation if
the data are really normally distributed. The
expected number of times that the next return is
outside the interval should then be only 29 out
of the more than 10,000 days. In fact, there are
75 indicating that there are more outliers than
would be expected from normality.

Additional information about volatility is
available from the options market. The value of
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traded options depends directly on the volatility
of the underlying asset. A carefully constructed
portfolio of options with different strikes will
have a value that measures the option market
estimate of future volatility under rather weak
assumptions. This calculation is now performed
by the CBOE for S&P 500 options and is re-
ported as the VIX. Two assumptions that un-
derlie this index are worth mentioning. The
price process should be continuous and there
should be no risk premia on volatility shocks. If
these assumptions are good approximations,
then implied volatilities can be compared with
ARCH volatilities. Because the VIX represents
the volatility of one-month options, the TARCH
volatilities must be forecast out to one month.

The results are plotted in Figure 10. The
general pattern is quite similar, although the
TARCH is a little lower than the VIX. These
differences can be attributed to two sources.
First, the option pricing relation is not quite
correct for this situation and does not allow for
volatility risk premia or nonnormal returns.
These adjustments would lead to higher options
prices and consequently implied volatilities that
were too high. Second, the basic ARCH models
have very limited information sets. They do not
use information on earnings, wars, elections,
etc. Hence the volatility forecasts by traders
should be generally superior; differences could
be due to long-lasting information events.

This extended example illustrates many of
the features of ARCH/GARCH models and how
they can be used to study volatility processes.
We turn now to financial practice and describe
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two widely used applications. In the presenta-
tion, some novel implications of asymmetric
volatility will be illustrated.

VI. Financial Practice—Value at Risk

Every morning in thousands of banks and
financial services institutions around the world,
the Chief Executive Officer is presented with a
risk profile by his Risk Management Officer. He
is given an estimate of the risk of the entire
portfolio and the risk of many of its compo-
nents. He would typically learn the risk faced by
the firm’s European Equity Division, its U.S.
Treasury Bond Division, its Currency Trading
Unit, its Equity Derivative Unit, and so forth.
These risks may even be detailed for particular
trading desks or traders. An overall figure is
then reported to a regulatory body although it
may not be the same number used for internal
purposes. The risk of the company as a whole is
less than the sum of its parts since different
portions of the risk will not be perfectly
correlated.

The typical measure of each of these risks is
Value at Risk, often abbreviated as VaR. The
VaR is a way of measuring the probability of
losses that could occur to the portfolio. The
99-percent one-day VaR is a number of dollars
that the manager is 99 percent certain will be
worse than whatever loss occurs on the next
day. If the one-day VaR for the currency desk is
$50,000, then the risk officer asserts that only
on one day out of 100 will losses on this port-
folio be greater than $50,000. Of course this
means that on about 2.5 days a year, the losses
will exceed the VaR. The VaR is a measure of
risk that is easy to understand without knowing
any statistics. It is, however, just one quantile
of the predictive distribution and therefore it
has limited information on the probabilities of
loss.

Sometimes the VaR is defined on a multi-day
basis. A 99-percent ten-day VaR is a number of
dollars that is greater than the realized loss over
ten days on the portfolio with probability 0.99.
This is a more common regulatory standard but
is typically computed by simply adjusting the
one-day VaR as will be discussed below. The
loss figures assume that the portfolio is un-
changed over the ten-day period which may be
counterfactual.
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To calculate the VaR of a trading unit or a
firm as a whole, it is necessary to have variances
and covariances, or equivalently volatilities and
correlations, among all assets held in the port-
folio. Typically, the assets are viewed as re-
sponding primarily to one or more risk factors
that are modeled directly. Riskmetrics™, for
example, uses about 400 global risk factors.
BARRA uses industry risk factors as well as
risk factors based on firm characteristics and
other factors. A diversified U.S. equity portfolio
would have risks determined primarily by the
aggregate market index such as the S&P 500.
We will carry forward the example of the pre-
vious section to calculate the VaR of a portfolio
that mimics the S&P.

The one-day 99-percent VaR of the S&P can
be estimated using ARCH. From historical data,
the best model is estimated, and then the stan-
dard deviation is calculated for the following
day. In the case of S&P on November 24, this
forecast standard deviation is 0.0076. To con-
vert this into VaR we must make an assumption
about the distribution of returns. If normality is
assumed, the 1 percent point is —2.33 standard
deviations from zero. Thus the value at risk is
2.33 times the standard deviation or in the case
of November 24, it is 1.77 percent. We can be
99 percent sure that we will not lose more than
1.77 percent of portfolio value on November 24.
In fact the market went up on the 24th so there
were no losses.

The assumption of normality is highly ques-
tionable. We observed that financial returns
have a surprising number of large returns. If we
divide the returns by the TARCH standard de-
viations, the result will have a constant volatil-
ity of one but will have a nonnormal
distribution. The kurtosis of these “devolatized
returns,” or “standardized residuals,” is 6.5,
which is much less than the unconditional kur-
tosis, but is still well above normal. From these
devolatized returns, we can find the 1-percent
quantile and use this to give a better idea of the
VaR. It turns out to be 2.65 standard deviations
below the mean. Thus our portfolio is riskier
than we thought using the normal approxima-
tion. The one-day 99-percent VaR is now esti-
mated to be 2 percent.

A ten-day value at risk is often required by
regulatory agencies and is frequently used
internally as well. Of course, the amount a
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portfolio can lose in ten days is a lot greater
than it can lose in one day. But how much
greater is it? If volatilities were constant, then
the answer would be simple; it would be the
square root of ten times as great. Since the
ten-day variance is ten times the one-day vari-
ance, the ten-day volatility multiplier would
be the square root of ten. We would take the
one-day standard deviation and multiply it by
3.16 and then with normality we would mul-
tiply this by 2.33, giving 7.36 times the stan-
dard deviation. This is the conventional
solution in industry practice. For November
24, the ten-day 99-percent VaR is 5.6 percent
of portfolio value.

However, this result misses two important
features of dynamic volatility models. First, it
makes a difference whether the current volatil-
ities are low or high relative to the long-run
average, so that they are forecast to increase or
decrease over the next ten days. Since the vol-
atility is relatively low in November, the
TARCH model will forecast an increase over
the next ten days. In this case, this effect is not
very big as the standard deviation is forecast to
increase to 0.0077 from 0.0076 over the ten-day
period.

More interesting is the effect of asymmetry in
variance for multi-period returns. Even though
each period has a symmetric distribution, the
multi-period return distribution will be asym-
metric. This effect is simple to understand but
has not been widely recognized. It is easily
illustrated with a two-step binomial tree, Figure
11, as used in elementary option pricing models.
In the first period, the asset price can either
increase or decrease and each outcome is
equally likely. In the second period, the vari-
ance will depend upon whether the price went
up or down. If it went up, then the variance will
be lower so that the binomial branches will be
relatively close together. If the price went down,
the variance will be higher so that the outcomes
will be further apart. After two periods, there
are four outcomes that are equally likely. The
distribution is quite skewed, since the bad out-
come is far worse than if the variance had been
constant.

To calculate the VaR in this setting, a simu-
lation is needed. The TARCH model is simu-
lated for ten days using normal random
variables and starting from the values of

This content downloaded from 218.107.132.55 on Wed, 11 May 2016 02:23:35 UTC
All use subject to http://about.jstor.org/terms



416 THE AMERICAN ECONOMIC REVIEW

Low
variance

High
variance

FIGURE 11. TwO-PERIOD BINOMIAL TREE WITH
ASYMMETRIC VOLATILITY

November 21.* This was done 10,000 times and
then the worst outcomes were sorted to find the
Value at Risk corresponding to the 1-percent
quantile. The answer was 7.89 times the stan-
dard deviation. This VaR is substantially larger
than the value assuming constant volatility.

To avoid the normality assumption, the simu-
lation can also be done using the empirical dis-
tribution of the standardized residuals. This
simulation is often called a bootstrap; each draw
of the random variables is equally likely to be any
observation of the standardized residuals. The Oc-
tober 1987 crash observation could be drawn once
or even twice in some simulations but not in
others. The result is a standard deviation multiplier
of 8.52 that should be used to calculate VaR. For
our case, the November 24 ten-day 99-percent
VaR is 6.5 percent of portfolio value.

VII. Financial Practice—Valuing Options

Another important area of financial practice
is valuation and management of derivatives

“In the example here, the simulation was started at the
unconditional variance so that the time aggregation effect
could be examined alone. In addition, the mean was taken to be
zero but this makes little difference over such short horizons.

JUNE 2004

such as options. These are typically valued the-
oretically assuming some particular process for
the underlying asset and then market prices of
the derivatives are used to infer the parameters
of the underlying process. This strategy is often
called “arbitrage free pricing.” It is inadequate
for some of the tasks of financial analysis. It
cannot determine the risk of a derivative posi-
tion since each new market price may corre-
spond to a different set of parameters and it is
the size and frequency of these parameter changes
that signify risk. For the same reason, it is
difficult to find optimal hedging strategies. Fi-
nally, there is no way to determine the price of
a new issue or to determine whether some de-
rivatives are trading at discounts or premiums.

A companion analysis that is frequently car-
ried out by derivatives traders is to develop
fundamental pricing models that determine the
appropriate price for a derivative based on the
observed characteristics of the underlying asset.
These models could include measures of trading
cost, hedging cost, and risk in managing the
options portfolio.

In this section, a simple simulation-based op-
tion pricing model will be employed to illustrate
the use of ARCH models in this type of funda-
mental analysis. The example will be the pric-
ing of put options on the S&P 500 that have ten
trading days left to maturity.

A put option gives the owner the right to sell
an asset at a particular price, called the strike
price, at maturity. Thus if the asset price is
below the strike, he can make money by selling
at the strike and buying at the market price. The
profit is the difference between these prices. If,
however, the market price is above the strike,
then there is no value in the option. If the
investor holds the underlying asset in a portfolio
and buys a put option, he is guaranteed to have
at least the strike price at the maturity date. This
is why these options can be thought of as insur-
ance contracts.

The simulation works just as in the previous
section. The TARCH model is simulated from
the end of the sample period, 10,000 times. The
bootstrap approach is taken so that nonnormal-
ity is already incorporated in the simulation.
This simulation should be of the “risk-neutral”
distribution, i.e., the distribution in which assets
are priced at their discounted expected values.
The risk-neutral distribution differs from the

This content downloaded from 218.107.132.55 on Wed, 11 May 2016 02:23:35 UTC
All use subject to http://about.jstor.org/terms



VOL. 94 NO. 3

60

50 4

40

PUT

30 4

20 +

10 - /

920 960 1,000

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
*+
‘f
’4-
+
ha
4
o+
ra
+
+

1,040 1,080

K

FIGURE 12. PuT PRICES FROM GARCH SIMULATION

empirical distribution in subtle ways so that
there is an explicit risk premium in the empiri-
cal distribution which is not needed in the risk
neutral. In some models such as the Black-
Scholes, it is sufficient to adjust the mean to be
the risk-free rate. In the example, we take this
route. The distribution is simulated with a mean
of zero, which is taken to be the risk-free rate.
As will be discussed below, this may not be a
sufficient adjustment to risk-neutralize the
distribution.

From the simulation, we have 10,000 equally
likely outcomes for ten days in the future. For
each of these outcomes we can compute the
value of a particular put option. Since these are
equally likely and since the riskless rate is taken
to be zero, the fair value of the put option is the
average of these values. This can be done for
put options with different strikes. The result is
plotted in Figure 12. The S&P is assumed to
begin at 1,000 so a put option with a strike of
990 protects this value for ten days. This put
option should sell for $11. To protect the port-
folio at its current value would cost $15 and to
be certain that it was at least worth 1,010 would
cost $21. The VaR calculated in the previous
section was $65 for the ten-day horizon. To
protect the portfolio at this point would cost
around $2. These put prices have the expected
shape; they are monotonically increasing and
convex.

However, these put prices are clearly differ-
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FIGURE 13. IMPLIED VOLATILITIES FROM GARCH
SIMULATION

ent from those generated by the Black-Scholes
model. This is easily seen by calculating the
implied volatility for each of these put options.
The result is shown in Figure 13. The implied
volatilities are higher for the out-of-the-money
puts than they are for the at-the-money puts; and
the in-the-money put volatilities are even lower.
If the put prices were generated by the Black-
Scholes model, these implied volatilities would
all be the same. This plot of implied volatilities
against strike is a familiar feature for options
traders. The downward slope is called a “vola-
tility skew” and corresponds to a skewed distri-
bution of the underlying assets. This feature is
very pronounced for index options, less so for
individual equity options, and virtually nonex-
istent for currencies, where it is called a
“smile.” It is apparent that this is a consequence
of the asymmetric volatility model and corre-
spondingly, the asymmetry is not found for cur-
rencies and is weaker for individual equity
options than for indices.

This feature of options prices is strong con-
firmation of asymmetric volatility models. Un-
fortunately, the story is more complicated than
this. The actual options skew is generally some-
what steeper than that generated by asymmetric
ARCH models. This calls into question the risk
neutralization adopted in the simulation. There
is now increasing evidence that investors are
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particularly worried about big losses and are
willing to pay extra premiums to avoid them.
This makes the skew even steeper. The required
risk neutralization has been studied by several
authors such as Jens C. Jackwerth (2000),
Joshua V. Rosenberg and Engle (2002), and
David S. Bates (2003).

VIII. New Frontiers

It has now been more than 20 years since the
ARCH paper appeared. The developments and
applications have been fantastic and well be-
yond anyone’s most optimistic forecasts. But
what can we expect in the future? What are the
next frontiers?

There appear to be two important frontiers of
research that are receiving a great deal of atten-
tion and have important promise for applica-
tions. These are high-frequency volatility
models and high-dimension multivariate mod-
els. I will give a short description of some of the
promising developments in these areas.

Merton was perhaps the first to point out the
benefits of high-frequency data for volatility
measurement. By examining the behavior of
stock prices on a finer and finer time scale,
better and better measures of volatility can be
achieved. This is particularly convenient if vol-
atility is only slowly changing so that dynamic
considerations can be ignored. Andersen and
Bollerslev (1998a) pointed out that intra-daily
data could be used to measure the performance
of daily volatility models. Andersen et al.
(2003) and Engle (2002b) suggest how intra-
daily data can be used to form better daily
volatility forecasts.

However, the most interesting question is
how to use high-frequency data to form high-
frequency volatility forecasts. As higher and
higher frequency observations are used, there is
apparently a limit where every transaction is
observed and used. Engle (2000) calls such data
ultra high frequency data. These transactions
occur at irregular intervals rather than equally
spaced times. In principle, one can design a
volatility estimator that would update the vola-
tility every time a trade was recorded. However,
even the absence of a trade could be information
useful for updating the volatility so even more
frequent updating could be done. Since the time
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at which trades arrive is random, the formula-
tion of ultra high frequency volatility models
requires a model of the arrival process of trades.
Engle and Jeffrey R. Russell (1998) propose the
Autoregressive Conditional Duration or ACD
model for this task. It is a close relative of
ARCH models designed to detect clustering of
trades or other economic events; it uses this
information to forecast the arrival probability of
the next event.

Many investigators in empirical market mi-
crostructure are now studying aspects of finan-
cial markets that are relevant to this problem. It
turns out that when trades are clustered, the
volatility is higher. Trades themselves carry in-
formation that will move prices. A large or
medium-size buyer will raise prices, at least
partly because market participants believe he
could have important information that the stock
is undervalued. This effect is called price im-
pact and is a central component of liquidity risk,
and a key feature of volatility for ultra high
frequency data. It is also a central concern for
traders who do not want to trade when they will
have a big impact on prices, particularly if this
is just a temporary impact. As financial markets
become ever more computer driven, the speed
and frequency of trading will increase. Methods
to use this information to better understand the
volatility and stability of these markets will be
ever more important.

The other frontier that I believe will see sub-
stantial development and application is high-
dimension systems. In this presentation, I have
focused on the volatility of a single asset. For
most financial applications, there are thousands
of assets. Not only do we need models of their
volatilities but also of their correlations. Ever
since the original ARCH model was published
there have been many approaches proposed for
multivariate systems. However, the best method
to do this has not yet been discovered. As the
number of assets increase, the models become
extremely difficult to accurately specify and
estimate. Essentially there are too many possi-
bilities. There are few published examples of
models with more than five assets. The most
successful model for these cases is the constant
conditional correlation model, CCC, of Boller-
slev (1990). This estimator achieves its perfor-
mance by assuming that the conditional
correlations are constant. This allows the vari-
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ances and covariances to change but not the
correlations.

A generalization of this approach is the Dy-
namic Conditional Correlation, DCC, model of
Engle (2002a). This model introduces a small
number of parameters to model the correlations,
regardless of the number of assets. The volatil-
ities are modeled with univariate specifications.
In this way, large covariance matrices can be
forecast. The investigator first estimates the vol-
atilities one at a time, and then estimates the
correlations jointly with a small number of ad-
ditional parameters. Preliminary research on
this class of models is promising. Systems of up
to 100 assets have been modeled with good
results. Applications to risk management and
asset allocation follow immediately. Many re-
searchers are already developing related models
that could have even better performance. It is
safe to predict that in the next several years, we
will have a set of useful methods for modeling
the volatilities and correlations of large systems
of assets.
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